ANGEWANDTE MATHEMATIK UND INFORMATIK
UNIVERSITAT ZU KOLN

Report No. 99.379

The fully automatic installation
of a Linux cluster

by
Mattias Gartner, Thomas Lange,
Jens Rithmkorf

1999

Institut fiir Informatik
Universitit zu Koln
Pohligstrafle 1
D — 50969 Koln

Keywords: Linux, Debian, automatic installation, system administration

The fully automatic installation
of a Linux cluster

Mattias Gartner Thomas Lange Jens Rithmkorf

Institut fiir Informatik, Universitit zu Koéln

December 20, 1999

Abstract

We present a non interactive system, called FAT (Fully Automatic Installation), to install
a Debian Linux operating system on a PC cluster. We take one or more virgin PCs, turn on
the power and after a few minutes Linux is installed, configured and running on the whole
cluster, without any interaction necessary. In addition, the configuration can be changed
automatically on all Linux cluster nodes. Thus we have a scalable method for installing
and updating a cluster with little effort involved. We use the Debian distribution and a
collection of shell- and Perl-scripts for the installation process. Changes to the configuration
files of the operating system are made by the tool cfengine.

Keywords: Linux, Debian, automatic installation, system administration

Contents

7

Motivation

Overview

2.1 Hardware e e
2.2 Requirements and preliminary work
2.3 Overview of the installation sequence

Setting up the server

3.1 Preconditions
3.2 Network daemons running on theserver
3.3 Creating the root filesystem for clients
3.4 Debian software packages o oL
3.5 Other exported directories e
3.6 Building BOOTP Configuration.

Booting clients

4.1 Creating a boot floppyo
4.2 Booting from floppy
4.3 Booting from network card L o oo

The installation process

5.1 Init and setup routines L
5.2 Definingclasses L
5.3 Partitioning diskso
5.4 Software installationo oL Lo
5.5 Mainpartof reS

The configuration
6.1 Scripts for defining classes L o oo
6.2 Cfengineand classes

Conclusions

References

Appendix

Uk W W

0 00~ ~JOo ot

10
11
12

15
15
18
19
20
21

23
24
27

29

30

31

1 Motivation

Have you ever performed identical installations of an operating system several times? Would
you like to be able to install a Linux cluster with dozens of nodes single handedly?

Repeating the same task time and again is boring — and will surely lead to mistakes.
Also a whole lot of time could be saved, if the installation were done automatically. An
installation process with manual interaction does not scale. But clusters have the habit
of growing over the years. Think long-term rather than plan only just a few months into
the future. When we received hardware for our Linux cluster — 1 server and 16 clients
— we decided to do a fully automatic installation of the cluster. It was obvious that it
would take some time to get things to work, but also that we would save much time in
the future. In the past, we had had much experience with the installation of the Solaris™™
operating system on SUN SPARC hardware. Solaris has an automatic installation feature
called JumpStartT™[13]. In conjunction with the auto-install scripts from Casper Dik[16]
we saved a lot of time not only for every new SUN computer, but also for reinstallation
of existing workstations. For example, we had to build a temporary LAN with four SUN
workstations for a conference, lasting only a few days. We took these workstations out of
our normal research network and set up a new installation for the conference. When it was
over, we simply integrated the workstation back into the research network, rebooted just
once, and after half an hour, everything was up and running as before. The configuration
of all workstations was exactly the same as before the conference, because everything was
performed by the same installation process. We also used the automatic installation for
reinstalling a workstation after a damaged hard disk had been replaced. It took two weeks
until we received the new hard disk but only a few minutes after the new disk was installed,
the workstation was running as before. And this is why we chose to adapt this technique
to a PC cluster running Linux.

The choice to use Debian Linux [10] was made, since some experience with this distri-
bution had been gathered. It was not possible to predict, if a different Linux distribution
would support this kind of installation better.

The Linux cluster will be a platform for the development of software for parallel meth-
ods for the satisfiability problem (SAT) and the CATS-project “Computer Aided Tram
Scheduling” as well as Also the design and implementation of efficient parallel adaptive
multigrid methods is an object of research.

2 Overview

2.1 Hardware
The following hardware was purchased for the linux cluster:

Server: named lichtenstein

e Asus P2B-DS Mainboard
e 2 x Intel Pentium IT 400 Mhz

512 MByte SDRAM (PC100)

3Com FastEtherlink XL, 10/100 Mbit, 3c905B chip
Adaptec AIC-7890/1 Ultra2 SCSI host adapter

2 x 9 GByte hard disk, IBM DDRS-39130D

e ATIT Xpert-Work, AGP, 8 MB graphic card

e TEAC CD-532S, 32 x speed SCSI-CDROM

e 1.44 MB floppy disk

16 Clients: named roy01 to royl6, each equipped with

Gigabyte 6BXD Mainboard

2 x Intel Pentium IT 400 Mhz

256 MByte SDRAM (PC100)

3Com FastEtherlink XL, 10/100 Mbit, 3c905B chip

4,3 GByte hard disk, Western Digital Caviar WDC AC24300L
S3 Virge DX, 4 MB graphic card

Switch: 24 ports 10/100Mbit, Cisco Catalyst C2924-XL

The overall cost for this hardware was about 30.000 Euro (purchased at the end of 1998). All
clients share one keyboard and one monitor through a tree of manual keyboard and monitor
switch boxes. Neither keyboard nor monitor are needed for an automatic installation.

2.2 Requirements and preliminary work

All that is needed for a fully automatic installation is a server providing BOOTP, NFS
and TFTP services. TFTP is only needed if the system is not booted from floppy, but via
the network card. A server running Linux is recommended but not mandatory. A running
Linux system is required in order to build new kernels. Access to all Debian packages via
NFS (mostly on the local NFS server) is needed.

The computer to be installed - called install client! or client for short — should boot from
its network card or from floppy. Time should then be invested to adjust the configuration
to local needs. Before booting the clients, four tasks must be performed:

e Set up BOOTP, NFS (and TFTP) services on the server.

e Create a kernel image that recognizes the network card and could mount its root
filesystem via NFS from the server. There is already a kernel image available, that
should work with most hardware.

e Create the root filesystem on the server. This is used only during the installation
process, not afterwards. This applies to all clients and is created by a simple script.

e Define how the clients should be installed (called configuration). The configuration
consists of:

1 An install client can also be installed as a server

— partition tables for the local disks
— mount information for local filesystems
— names of software packages to be installed

— information on changes and supplements for the operating system

Most of the work is spent in creating the first configuration. Once a suitable configuration
exists, a new computer with slightly different equipment would usually require no change
to the configuration. If the requirements are however different, changes to the existing
configuration usually require little effort. It is also possible to make changes on a running
system rather than performing a complete new installation.

2.3 Overview of the installation sequence

During an installation the following steps are performed:

1. The client boots via the network or from floppy, starting a fully functional Linux
operating system without using the local disk.

2. The local hard disks are partitioned and empty filesystems are created on all parti-
tions, if desired.

3. The selected software packages are installed.
4. The changes to the configuration of the operating system are carried out.
5. The install client reboots from its local disk and installation is completed.

At present, it is safer to reboot a second time, as a script is executed during the first booting
from local disk. This is done automatically. The first step is also very useful if parts of the
local hard disk are damaged and a backup must be performed.

3 Setting up the server

3.1 Preconditions

A Debian Linux distribution is used to install Linux on the clients together with cfengine
and some scripts. The server is called lichtenstein and our clients are named roy01 through
royl6.

Currently our clients are installed as dataless clients, mounting /usr and /home from the
server. All computers are connected directly to a switch and are using one class C subnet.
We are using NIS [6](Network Information Service, formerly known as Yellow Pages YP)
to distribute data for passwd, hosts, netgroup and other files. Our NIS Server is a SUN
Enterprise 450 and all Linux hosts are NIS clients. Setting up NIS will not be explained in
this paper, as it is not needed for an automatic installation. Almost all files for the fully
automatic installation are located under /files/install. The three main directories used
for the installation are:

fai/ about 5 MB, all configuration files
root/ about 30 MB, wuntar’ed file base2_1.tgz
debian/ about 1.2 GB, Debian 2.1 distribution with packages main, contrib, non-free

Separate directories for each client are not required. All three directories are exported read
only. The disk size needed is mainly determined only by the size of Debian packages. Here
is an extract of the directory tree of FAI, showing the main parts:

lichtenstein[/files/install]# tree -d fai
fai/

|-- fai_scripts
|-- class

|-- disk_config

| -- package_config
|-- scripts

|-- doc

[-- etc

|-- files

| --— kernel

All base FAI scripts are located in the subdirectory fai_scripts. The subdirectory class
contains all scripts and files for defining classes for the clients. The configuration for
partitioning the hard disk and mounting local filesystems are stored in disk_config. In-
formation for software packages can be found in package_config. The scripts that are
executed at the end of the installation are stored in subdirectory scripts. Templates for
files that are copied onto the clients are located in files. The Subdirectories etc and
kernel contain files for NIS and BOOTPD and the scripts for building different kernels.
Finally, doc contains some documentation.

For each client we have to define the ethernet and IP address and make an entry for
netgroup. We add this data into the NIS tables. Without using NIS these entries are made
in /etc/ethers, /etc/hosts and /etc/netgroup.

3.2 Network daemons running on the server

To enable TFTP and BOOTP on a server, the following lines are usually added to the file
/etc/inetd. conf or, should they already exist, they are uncommented:

tftp dgram udp wait nobody /usr/sbin/in.tftpd in.tftpd /tftpboot/
bootps dgram udp wait root /usr/sbin/bootpd bootpd -t 120

After changing this file, inetd is instructed to reread its configuration file.

lichtenstein[~]# killall -v -HUP inetd
Killed inetd(196)

Debian Linux contains a program killall, which kills processes by name. If this is not avail-
able, simply use kill -HUP <pid of process>. Normally, BOOTP requests are broadcast
only within a subnet. If the clients are connected to a different subnet than the BOOTP
server, the router configuration should be altered, or a BOOTP gateway (see bootpgw(8))
should be used to forward the requests to the BOOTP server.

To enable NFS service, rpe.nfsd and rpc.mountd daemons must be started. Debian
does this by executing the script netstd nfs (Debian version 2.0) or nfs-server (since
Debian version 2.1), which are located in /etc/init.d. The file /etc/exports controls
which directories can be mounted by which hosts. The following directories must exported,
so the clients are able to mount them:

lichtenstein[~]> cat /etc/exports

/usr @linux-cluster(ro,no_root_squash)
/files/install/root @linux-cluster(ro,no_root_squash)
/files/install/fai @linux-cluster(ro,no_root_squash)

/files/install/debian @linux-cluster (ro,no_root_squash)

The netgroup @linux-cluster contains all install clients and is distributed via NIS.
A netgroup can also be defined in the file /etc/netgroup?. The contents of the exported
directories are described later in detail. After changing /etc/exports, the mount daemon
is instructed to reload its configuration file in the same way as inetd.

lichtenstein[~]# killall -v -HUP rpc.mountd
Killed rpc.mountd(23870)

3.3 Creating the root filesystem for clients

With Debian, it is very easy to create the root filesystem, which is mounted read only by
the clients during the installation process. Debian supports a “base” root filesystem, which
includes the essential packages which are absolute required. For Debian 2.1 (also called
slink) this is base2_1.tgz, which can be found in slink/main/disks-i386/current/.
The script create_client_root.sh (sources in the appendix) extracts the files of the tar
archive. As a next step, some symbolic links to /tmp are made for the files which must be
writable. A ramdisk allows writing to files located in /tmp. Only one missing binary and a
script must be copied into the root filesystem. The binary /sbin/bootpc [14] is a BOOTP
client, which receives data from a BOOTP server for a client and prints it. This is part
of the netstd package. The original script /etc/init.d/rcS is replaced by the new script,
which performs the installation. When a. client has booted its kernel, rcS is the first script
which is executed by the init process. This script controls the sequence of the installation.

3.4 Debian software packages

Each client receives the software packages that will be installed over the network. If several
clients are to be installed, this could produce a great amount of network traffic. Therefore

Zsee netgroup(5) for more information

a local copy of all needed Debian software packages is recommended. We are using a
local copy stored in /files/install/debian on the server. This is a copy of Debian 2.1
retaining the directory structure of the Debian distribution. Figure 1 shows an extract of
the tree structure of the Debian distribution.

lichtenstein[~]> tree /files/install/debian -d
/files/install/debian
‘—— dists
| -- Debian2.1r2 -> slink
|-- slink
| |-- contrib
| | |-- binary-all
| | | |-- admin
| | | | -— base
1 == x11
| | ‘-- binary-i386
| | |-- admin
| | |-- base
| | | ‘—— x11
| |-- main
| | |-- binary-all
| | |-- binary-i386
I I |-- disks-i386
| | | |-- 2.1.9-1999-03-03
| | | ‘—— current -> 2.1.9-1999-03-03
| | ‘-- upgrade-2.0-1386
| ‘—— non-free
| |-- binary-all
|-- stable -> slink

Figure 1: Directory structure for Debian (extract)

3.5 Other exported directories

The /usr partition of a linux host must also be exported. It is mounted during the installa-
tion, so all needed binaries are available. The subdirectory /files/install/fai contains
all configuration information and is described in section 6.

3.6 Building BOOTP Configuration

If BOOTP has been setup on the server, it must be fed with the necessary data. As an
example, here is our /etc/bootptab:

/etc/bootptab

.global.prof:\
:ms=1024:\
:sa=lichtenstein:\
:hd=/tftpboot/:\
:hn:bs=auto:\
:rp=/files/install/root:\
:ts=rubens:\
:T170="134.95.9.100:/files/install/fai":
:T171="install":\
:sm=255.255.255.0:\
:gw=134.95.9.254:\
:dn=informatik.uni-koeln.de:\
:ds=134.95.9.136,134.95.100.209,134.95.100.208:\
:ys=rubens:yd=informatik4711.YP:\
:nt=time.rrz.uni-koeln.de,time2.rrz.uni-koeln.de:

T170 is used for the location of the fai directory
T171 "install" means do the installation, else execute a shell

roy01:ha=0x00105a270b29:bf=roy01:tc=.global.prof:
roy02:ha=0x00105A270c08:bf=roy02:tc=.global.prof:

In this example, the BOOTP configuration is identical for all clients. It is nevertheless
possible to define different NIS servers for different hosts, or different domain name servers
for certain hosts. Using different directories for the FATI configuration (T170) is not rec-
ommended, because we use classes within FAT to specify different configurations. The root
path should also be identical for all clients, in order to save disk space. Clients can use the
same root directory simultaneously, because they do not have write permission for it.
With the option hn, the client’s hostname is sent to the client instead of the numerical
IP-address. Option ms is needed, because the configuration exceeds a certain size. Setting
bs=auto prevents defining the size of the boot file, which is the concatenation of options
hd and bf e.g., for roy01 the filename is /tftpboot/roy01l. The values of sm and gw are
used for the booting process. The network card will use them to configure itself correctly.
The following variables are later used during the configuration of the operating system:

ys Name of NIS server

yd Name of NIS domain

ts Time server address list

nt NTP (network time protocol) server list
dn Domain name that is used in resolv.conf
ds Domain name server address list

sa TFTP server address

rp Root path to mount as root
T170 This is a generic tag. It is used for the location of the FAT directory.

T171 This generic tag defines if an installation should be performed or if a shell will be
executed.

There are two generic tags — T170 and T171. The choice of numbers are random. This
feature may be used in future to pass more data to the clients. See figure 2 (on page 17),
for how this data is passed to the client. The manual pages of bootptab(5) contain more
information.

4 Booting clients

4.1 Creating a boot floppy

There are two methods for booting the clients. The computer can boot from its network
interface card (NIC) to receive the boot image via BOOTP/TFTP, or an appropriate kernel is
loaded from a floppy. Booting from a network card is described is section 4.3.

Should booting take place from floppy, creating a boot floppy is very easy for most
network cards. The file bzImage .install must be simply copied onto a floppy.

dd if=/files/install/fai/kernel/bzImage.install of=/dev/£d0

This is a bzImage (kernel version 2.0.36) with most device drivers compiled into the kernel
and the root device is changed with rdev(8) from /dev/hdal to 0x00ff. The configuration
for compiling this kernel is saved into bzImage.install.config. The boot floppy can now
be tested (see section 4.2).

If this bootfloppy does not work, a new kernel has to be compiled. In order to compile
this installkernel, the BOOTP option has to be enabled, so the kernel will mount the
root filesystem via NFS. For kernel versions up to 2.1 series, these options are located
in menu NFS filesystem support and are called Root file system on NFS and BOOTP
support. In kernels newer than 2.1 activate Networking options -> IP: Kernel level
autoconfigurationand Filesystems -> Network File Systems -> NFS filesystems
support -> Root file system on NFS3. The options ramdisk, proc filesystem and rtc
(real time clock) support are also required, which will mostly be enabled by default. The
option initrd (initial RAM disk support) must not be enabled. After compiling the kernel,
the default root device should be changed in order to determined by BOOTP. The following
commands are used to change it and to write the kernelimage onto a floppy:

lichtenstein[~]# cd /usr/src/linux/arch/i386/boot
lichtenstein["]# rdev bzImage

Root device /dev/hdail

lichtenstein[~]# mknod /dev/boot255 ¢ 0 255

3Thank to Jakob Flierl for this hint. See http://www.luga.de/ flierl /diskless_suse

10

lichtenstein[~]# rdev /dev/fd0 /dev/boot255
lichtenstein[~]# rm -f /dev/boot255
lichtenstein[~]# rdev bzImage

Root device 0x00ff

lichtenstein["]1# dd if=bzImage of=/dev/£d0

The first rdev call shows the current root device for the kernel image. Then a temporary
device is created and set with the second call of rdev. Finaly we copy the kernel to the

floppy.

4.2 Booting from floppy

The floppy is tested by booting the computer from it. Here are some of the messages for
the client roy01 which is booting without errors:

Loading.................
Uncompressing Linux...done.
Now booting the kernel

Linux version 2.2.10 (root@faiserver) (gcc version 2.7.2.3)
#11 SMP Thu Dec 16 12:33:01 MET 1999

Processor #0 Pentium(tm) Pro APIC version 17

Processor #1 Pentium(tm) Pro APIC version 17

Processors: 2

Detected 398944669 Hz processor.

Console: colour VGA+ 80x25

Partition check:

hda: hdal hda2 hda3 hda4 < hdab hda6é hda7 hda8 >

Sending BOOTP request...... 0K

Root-NFS: Got BOOTP answer from 134.95.9.100, my address is 134.95.9.101
Root-NFS: Got file handle for /files/install/root via RPC

These are the messages seen during successful booting. If the client receives no response
from a BOOTP server, the following message appears:
Sending BOOTP request.............. timed out!

This means that the boot floppy is OK, but the computer can not connect to a BOOTP
server. If the network card is not recognized by the kernel, the following error message is
printed:

Root-NFS unable to open at least one network device

Then a new kernel with support for the installed network card has to be compiled.

11

4.3 Booting from network card

We distinguish two kernel. One kernel, also called the install kernel, is used during the
installation process. The other kernel, we named it cluster kernel*, is used for normal
operation when the client is booting from the local disk. These kernels do not need to be
identical. Kernel version 2.0.36 (the default kernel for Debian 2.1) is currently used during
the installation, and version 2.2.10 is used when the clients have booted from local disk,
since we are using clients with two CPU’s each, and the newer kernels better support SMP
(Symmetric Multi Processing).

For administrative purposes, booting from network card (NIC) is much more suitable
than booting from floppy. In order to use this boot method, a boot ROM that is able to
communicate with a BOOTP server to receive communication-related configuration values
such as network addresses and which is capable of communicating with a TFTP-server to
obtain a boot image must be obtained. Furthermore, it must be guaranteed that the
transmitted boot image is executed properly in terms of what the boot ROM expects in
a boot image. Our boot ROM failed to execute a bzImage, which we had created to boot
from floppy, so we had to find another solution.

Booting Linux via network card is be done by using either Netboot [8], Etherboot [9] or
NILOS. The first two programs are capable of creating a boot ROM binary (which must be
programmed onto a ROM) and a corresponding TFTP boot image which includes a kernel
image. Some tools, exist that help test a boot ROM image for example.

The advantage of Netboot is its ability to emulate just enough of a DOS environment
such that unmodified DOS packet driver binaries (these are usually provided with the NIC)
can be used for building a boot ROM. Etherboot, on the other hand, creates smaller
boot ROM images; the compressed versions will fit in 8 KB (all NIC’s should support
this size). Also Etherboot does autoprobing of the hardware addresses, while Netboot
only does autoprobing as long as the packet driver supports this feature. However, the
boot ROM binary one of these programs created will most likely have to be burnt onto
an appropriate PROM, but if care it taken in the choice of hardware to be bought, there
are no problems to get the network card to work. For our Linux cluster, however, we use
neither Netboot, Etherboot, nor a PXE-compliant boot ROM, but use the boot ROM
by Lanworks Technologies that comes with the 3Com-FastEtherlink XL 3c905B NICs.
Since most proprietary solutions are based upon Intel’s PXE-specification [15, 5] — which
is supported by the Lanwork ROM currently is use, as well — this seems to be a rather
unusual workaround. Since it works well for our purposes, we did not find the need to
change the procedure. If it is clear that either Netboot or Etherboot, or a solution based
on a proprietary PXE-compliant boot ROM will be used, this part can be disregarded.

3Com usually equips its NICs with the Managed PC Boot Agent (MBA) ROM by
Lanwork Technologies. MBA’s version v3.10 worked well after we configured the ROM as
follows (press Ctrl+A1t+B during boot up):

4Since we use it for our Linux cluster
While this document is written, developments are made to the NILO project[11]. Tts goal is to provide
network booting ROM - based on Linux network adaptor drivers - which support the Intel PXE specification.

12

Managed PC Boot Agent (MBA) v3.10
(C) Copyright 1998 Lanworks Technologies Co. a subsidiary of 3Com Corporation
A1l rights reserved.

Configuration
Boot Method: TCP/IP
Protocol: BOOTP
Default Boot: Network
Local Boot: Disabled
Config Message: Enabled
Message Timeout: 3 Seconds
Boot Failure Prompt: Wait for key

Use cursor keys to edit: Up/Down change field, Left/Right change value
ESC to quit, F9 restore previous settings, F10 to save

In order to build a file that can be loaded via TFTP from the NIC’s and that is able to
boot the kernel properly, we use the tools that are enclosed in the ROM package. The tools
require a DOS-formatted disk for booting the Linux kernel. The TFTP boot image we are
using is created with this disk. We use syslinuz(1) to build such a disk:

lichtenstein[~]# superformat /dev/fd0
Verifying cylinder 79, head 1

mformat -s18 -t80 -h2 -52 -M5612 a:
lichtenstein["]# mount -t msdos /dev/£fd0 /floppy/
lichtenstein[~]# cat syslinux.cfg
TIMEOUT 40

PROMPT O

DEFAULT bzImage

APPEND root=/dev/nfs

lichtenstein[~]# cp syslinux.cfg /floppy/
lichtenstein["1# cp bzImage /floppy/
lichtenstein[~]1# umount /floppy/
lichtenstein["]# syslinux /dev/£fd0

If the BIOS causes trouble booting from this disk, the command syslinux -s /dev/£d0 is
used. Afterwards imagegen, a tool from the MBA-software, is used on a standard MS-D0S-
computer to build the TFTP boot image (a: denotes the disk just created using syslinux,
tftpboot . img denotes the TFTP boot image which is to be created).

C:\> imagegen a: tftpboot.img

The imagegen command is invoked only once. The image file that is created by imagegen
is exactly 1024 bytes larger than a regular D0S-disk. Therefore all we need are these first
1024bytes and a working syslinux boot disk to create a valid TFTP boot image:

13

lichtenstein[~]# dd if=tftpboot.img of=first_block bs=1024 count=1
1+0 records in

1+0 records out

lichtenstein["]1# cp first_block new_tftpboot.img

lichtenstein["]1# dd if=/dev/fd0 of=new_tftpboot.img bs=1024 seek=1
1440+0 records in

1440+0 records out

lichtenstein[~]# cp new_tftpboot.img /tftpboot/installimage
lichtenstein["]# chmod a=r /tftpboot/installimage

This is all it takes to create a TFTP boot image. There is a shell script kernel2image.sh
doing exactly the described operation by mounting an image of an empty DOS-disk as
loopback device. We distinguish between ’install’-booting® and 'normal’-booting” our Linux
cluster. Thus each client has a link to one of the two different boot images in /tftpboot/.

lichtenstein[...fai/kernell# 1s -1 /tftpboot/

total 2896

-r--r--r-- 1 root root 1475584 Aug 18 15:23 clusterimage
-r-—-r—-r-- 1 root root 1475584 Aug 18 00:46 installimage
lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:47 royOl1l -> installimage
lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:03 roy02 -> installimage

Boot time arguments are passed to the kernel using the configuration file syslinux.cfg. Using
such an “append” parameter, we let the kernel, which is loaded by the TFTP boot image,
boot either from root device /dev/hdal or /dev/nfs®. Finally, this is how the TFTP boot
images using the script kernel2image.sh were actually build for a IDE hard disk:

lichtenstein[...fai/kernell# kernel2image.sh clusterimage bzImage /dev/hdal
generate:

tftp boot image '"clusterimage" from

kernel "bzImage" with

append-param. "root=/dev/hdal"?
type ctrl-c to abort, return to continue

step 1/6: generate temporary D0OS-disk

step 2/6: copy kernel to disk

step 3/6: create syslinux.cfg on disk

step 4/6: install syslinux

step 5/6: copy MBA’s imagegen-loader to tftp boot image
step 6/6: append DOS-disk to tftp boot image

6Using /files/install/root as root filesystem

"Using the root filesystem from /dev/hdat

8To be exact, /dev/nfs is not really a device, but rather a flag to tell the kernel to get the root filesystem via
the network.

14

1440+0 records in
1440+0 records out
+++ tftp boot image '"clusterimage" generated. +++

lichtenstein[...fai/kernell# kernel2image.sh installimage bzImage /dev/nfs

+++ tftp boot image "installimage" generated. +++

Now all information to test if the clients can boot with the selected method is available.
Setting T171="Xinstall", the client boots but does not perform the installation.

5 The installation process

This section explains the installation process in detail. The host roy01 is used in our
examples. After uncompressing and successfully booting the kernel, the root directory
is mounted (for boot messages see section 4.2) and the first process (init) is spawned.
The file /etc/inittab defines that /etc/init.d/rcS is the first process started by init.
Since the client mounts its root filesystem /files/install/root from the server, it in fact
executes /files/install/root/etc/init.d/rcS, which is the new script for the fully
automatic installation. A copy of the script resides in /files/install/fai/fai scripts.
The following steps are performed in rcS:

1. initialize Linux

2. setup FAI

3. define classes

4. format local disk

5. install software packages

6. call cfengine or other scripts
7. save log files

8. reboot

We now describe the operation of this script.

5.1 Init and setup routines

First, the subroutine fai_init is called.
fai_init

1 fai_init() {

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/sbin\
:/usr/local/bin:/fai/fai_scripts

15

10

15

20

25

30

export PATH
umask 022

mount -n -t proc proc /proc

cat /proc/kmsg >/dev/ttyd &

[-x /sbin/update] && update
create_ramdisk /dev/ram0

> /tmp/FAI_INSTALLATION_IN_PROGRESS
trap ’exec sh’ 2

dmesg > /tmp/dmesg.log

echo ""

echo "$0: starting fully automatic installation FAI ..."

echo "Press ctrl-c to interrupt installation process and to get a shell"

TODO: if timeout for bootpc exit installation
define all bootpc information as variables
bootpc | sed -e ’s/"/export /’ > /tmp/bootpc.log
. /tmp/bootpc.log

hostname $HOSTNAME

if ["$T171" != "install"]; then
echo /etc/bootptab: T171 != install. Not performing FAI installation.
exec sh

fi

This subroutine mounts the proc filesystem first, since it contains information on the hard-
ware and the running system (see manuals of proc(5)). Line 9 redirects all kernel messages
to a virtual console that can be viewed by typing Al1t-F4. Then the update daemon is
started, flushing the filesystem buffers at a regular interval. In line 11, the subroutine
create_ramdisk is called to create a ramdisk on /dev/ram0. The ramdisk is mounted on
/tmp, where all writable files including all log files are stored. Line 13 enables the fea-
ture to interrupt the installation process and to execute a bash shell by typing ctrl-c.
Debugging is therefore possible, should functions not work as expected. After displaying
a few messages, bootpc is called. This BOOTP client program receives all data from the
BOOTP server and stores it in a temporary file. Using the simple sed script, the syntax of
the output is changed and used as a normal shell script. Figure 2 shows the file for client
roy01. The script rcS sources this file and defines all the variables. In co-operation with
the generic tags of BOOTP, a lot of information is passed to the client. If bootpc prints an
error message, we check /etc/bootptab or start the BOOTP daemon with debug options

enabled. The first step is finished with the setting of the hostname.

The procedure fai_setup mounts the configuration directory and reads the global config-
uration fai.conf (see appendix, page 32). All variables with prefix FAI_ are defined in this
file. Before mounting /usr from the server, only a few executables in /files/install/root
are available. After mounting, all programs and most libraries are available including rdate,

16

1

10

lichtenstein[~]# cat “fai/roy01/bootpc.log
export SERVER=’134.95.9.100’

export IPADDR=’134.95.9.101°

export BOOTFILE=’/tftpboot//roy01’

export NETMASK=’255.255.255.0’

export NETWORK=’134.95.9.0’

export BROADCAST=’134.95.9.255’

export GATEWAYS_1="134.95.9.254°

export GATEWAYS=’134.95.9.254°

export ROOT_PATH=’/files/install/root’

export DNSSRVS_1=’134.95.9.136’

export DNSSRVS_2=’134.95.100.209’

export DNSSRVS_3=’134.95.100.208"

export DNSSRVS=’134.95.9.136 134.95.100.209 134.95.100.208’
export DOMAIN=’informatik.uni-koeln.de’
export SEARCH=’informatik.uni-koeln.de uni-koeln.de’
export YPSRVR_1=’134.95.9.10’

export YPSRVR=’134.95.9.10’

export YPDOMAIN=’informatik4711.YP’

export TIMESRVS_1=’134.95.9.10’

export TIMESRVS=’134.95.9.10’

export NTPSRVS_1=’134.95.100.209’

export NTPSRVS_2=’134.95.170.8’

export NTPSRVS=’134.95.100.209 134.95.170.8’
export HOSTNAME=’roy01’

export T170=’134.95.9.100:/files/install/fai’
export T171=’install’

Figure 2: bootpc.log for roy01

which is then executed to set the local time. However, the time may be shown for a different
timezone. It is set correctly at the end of the installation process.
fai_setup

fai_setup() {

generic tag 170 (bootptab) used for location of fai directory
export FAI_LOCATION=$T170
mount -o ro $FAI_LOCATION /fai
read global config for fai
if [-r /fai/fai.conf]; then
echo mounting FAI directory from $FAI_LOCATION
. /fai/fai.conf
echo $FAI_VERSION
echo ""
else
echo mounting $FAI_LOCATION failed
echo "or can’t read /fai/fai.conf"

17

15

20

1

10

15

20

echo "Can’t start fully automatic installation."
sh
fi

after mounting /usr, we have everything needed
mount -o ro -n -t nfs ${FAI_NFSSERVER}:/usr /usr &%&
echo /usr mounted from ${FAI_NFSSERVER}

rdate ${TIMESRVS_1}

5.2 Defining classes

The subroutine define_classes is then called. The variable $classes contains a list of all the
classes that are defined for the client. We also say “the client belongs to these classes”.
Classes control how a client will be installed. This feature is described later in section 6.
The subroutine defined_classes calls all scripts in fai/class, whose file name match the
pattern S[0-9]*.{sh,pl,source} (filenames start with an uppercase S follow by a digit
and any other character ending in .sh, .pl or .source) and which are executable. These
scripts are called in alphabetical order and print the names of the classes to standard output
to define them. Files with postfix .source need not define classes, but are used to define
variables for cfengine.

define_classes

define_classes() {
cd /fai/class

alphabetical sort is important

for f in ‘ls S[0-9]*.{sh,pl,source}‘ ; do
if [-x $f] && [-f $f]; then
[-n "$verbose"] && echo executing $f

case $f in
*.pl) newclasses=‘perl $f </dev/null® ;;
*.sh) newclasses=‘sh $f </dev/null -

source files, which can set variables
*.source)

[-n "$debug" 1 && set -v

. $f </dev/null

[-n "$debug"] && set +v

newclasses=

0

18

25

30

esac

[-n "$debug"] && echo " newclasses= $newclasses"
export classes="$classes $newclasses"
fi

done

5.3 Partitioning disks

After the classes are defined, the main installation part starts. The local disks are config-
ured by calling the script setup_harddisk.pl (located in /fai/fai_scripts). The script
searches for a disk configuration file in /fai/disk_config, whose name is a class to which
the client belongs. All definitions for the disk layout must be stored in one file. The local
disks are partitioned, and the script creates empty filesystems on these partitions by de-
fault. Moreover, the data on a partition can be preserved, if desired. The partitions are
mounted on $FAI_ROOT according to the predefined mount points. The disk configuration
for roy01 is stored in the file 4GB, because the script S07disk.pl (see page 26) defines this
class for roy01 and no other configuration file with name roy01 exists.

lichtenstein# cat 4GB
disk configuration for one disk with 1000-4000kb

<type> <mountpoint> <size in mb> [mount options] [;extra options]

disk_config hda

primary / 30 rw,errors=remount-ro ;-c

logical swap 200 v

logical /var 50-200 rw

logical /usr 70 rw

logical /tmp 100-150 ;-m 0

#logical /scratch 0- rw,nosuid ;-m 0 -i 50000
logical /scratch preserve9 rw,nosuid ;-m 0 —i 50000

It is possible to define the size, the mount point, the mount options and extra options
(mostly for mke2fs) for each partition. A new filesystem is created on each partition by
default. However, the size and the data of a partition can also be preserved. Preserving
data is done by specifying the size as preseve<no>, whereas <no> is the device number of
the partition that must remain unchanged. If an interval is defined for several partition
sizes, the script tries to maximize these sizes, preserving the ratio between them. A detailed
description can be found in fai/doc/README.disk.config.

19

5.4 Software installation

After mounting the disks, the Debian software packages are installed. Debian uses a
“base” tar file which includes all required software packages. It is the same tar file that
is used for creating the root filesystem in /files/install/root/ on the server. The
script install base_root.sh mounts the directory containing all Debian packages to
/fai/debian/ and extracts files from the base file. After these packages are installed,
the other necessary packages are installed on the client. For this, we use the script
install_packages.pl, which reads all configuration files from /fai/package_config/
matching a class name, is used. Client roy01 only installs software defined in file ROY,
because it is a dataless client, mounting most of the software from the server. Here are two
examples for software configuration files:

lichtenstein[...fai/package_config]l> cat ROY
PACKAGES install

netstd lpr pciutils sysutils time strace 1ldso
tcsh tcsh-i18n less cfengine

psmisc psutils

cron mpich

lichtenstein[...fai/package_config]l> cat COMPILE
packages for developing software

PACKAGES install

cpp bin86 binutils m4 make

libc6-dev 1libg++2.8.2 libstdc++2.9-dev

g++ gcc gdb libstdc++2.9

flex g77 byacc cvs

The script uses the Debian command apt-get(8). This new command-line tool for handling
packages — like dpkg(8) — is currently under development. Therefore, with a new versions
of apt-get, new features will be added, all of which will make this part of the automatic
installation more comfortable. The configuration file starts with the string PACKAGES fol-
lowed by an apt-get(8) command. Currently only the command install is used, but there
are some other commands like remove or upgrade.

Currently apt-get fails during the installation of some software packages. Installing a De-
bian package comprises several steps. It is important to realize that installing a package also
includes unpacking and configuring. During the configuration, an existing postinstall script
(see /var/lib/dpkg/info/*.postinst) for this package is called, which may execute any
command. This is a problem for the fully automatic installation, since a chroot $FAI_ROOT
is performed during installation via apt-get. This means that some parts of the postinstall
scripts fail to get their current working directory, or that daemon processes cannot be
started or stopped. The main problem, however, are manual input requests by a post
install script. This has to be suppressed, since we want automatic installation without
any manual user interaction. Nevertheless it was possible to install the software packages

20

10

15

20

25

without any interaction. For this purpose yes ""| dpkg --configure -a is called after
the installation during the first boot from the local disk. This performs a configuration for
all remaining unconfigured packages as if pressing RETURN to all questions the postinstall
scripts would ask. This may not be elegant, but it works ! For safety, the client reboots
for a second time later.

5.5 Main part of rcS

After installing the software packages, the default configuration of the software will not
fit our local needs. Therefore we use cfengine and some shell scripts as the last part of
the automatic installation, which is described in section 6.2. In lines 23 to 46 the type
of the script is determined and it is executed. The subroutine save_log stores all log files
on the local disk to $FAI. LOGDIR and to the user $FAI_ USER on the server. Finally,
we alter the boot method, in order to hinder installation again. This is done by changing
the link in /tftpboot on the server, so the client boots another kernel, which mounts its
root filesystem not from the server, but from the local disk. If the client was booted from
floppy, it has to be ejected before booting. Currently we use different links in /tftpboot
to change the kernel being booted. The following code shows the main part of rcS:
rcS

fai_init

(# execute in a subshell to get all output
fai_setup
define_classes

partition local harddisks
setup_harddisks.pl > /tmp/format.log 2>&1
. /tmp/disk_var.sh

mount debian packages and install baseX_Y.tgz
mount_packages.sh

echo installing software may take a while
install_packages.pl > /tmp/software.log 2>&1

execute scripts; cfengine and shell scripts are known
echo executing scripts

cd /fai/scripts

for class in $classes ; do

if [-x $class] && [-f $class]; then

filetype=‘file $class®

type=

echo $filetype | grep —-q "cfengine script" && type=cfengine
echo $filetype | grep -q "shell script" && type=shell

echo executing script: $class

case $type in

21

30

35

40

45

50

95

60

65

70

75

shell)
[-n "$verbose"] && echo "executing shell: $class"
echo "===== shell: $class =====" >> /tmp/shell.log 2>&1

./$class >> /tmp/shell.log 2>&1

0

cfengine)
[-n "$verbose"] && echo "executing cfengine: $class"

echo "===== cfengine: $class =====" >> /tmp/cfengine.log 2>&1
./$class --no-lock -v -f $class -D${cfclass} >> /tmp/cfengine.log 2>&1

0

*) echo "WARNING: unknown file type for file $filetype" ;;
esac
fi
done

chroot $FAI_ROOT hwclock --systohc

date

echo "installation completed."

rm -f /tmp/FAI_INSTALLATION_IN_PROGRESS
) 2>&1 | tee /tmp/rcS.log

if [-f /tmp/FAI_INSTALLATION_IN_PROGRESS] ; then
echo Error while executing commands in subshell.
echo /tmp/FAI_INSTALLATION_IN_PROGRESS was not removed.
echo Please look at log files for errors.
sh
fi

save_log

now change boot device (local disk or network)
[-n "$FAI_USER"] &&
rsh -1 $FAT_USER ${SERVER} "cd /tftpboot/ ; rm -f $HOSTNAME;\
1n -s clusterimage $HOSTNAME"

if [! -f /tmp/REBOOT] ;then
echo "Press <RETURN> to reboot or ctrl-c to execute a shell"
read

fi

echo "rebooting now"
cd /

sync

umount -a

exec /sbin/reboot -dfi

22

The installation time is mainly determined by the amount of software that is installed on
the local disk. An installation of a dataless client needing less than 50 MB data requires
about two minutes using a 10 Mbit network card. An installation of a server with 310 MB
of software and the same hardware needs about eight minutes. Using option -c in the disk
configuration for a 3.5 GB partition extents the installation time by about seven minutes
because it checks for bad blocks.

6 The configuration

Most files for the automatic installation process are stored in the directory tree displayed
below. Only bootptab and NIS information are located in other locations but copies exists
in the subdirectory etc.

lichtenstein# tree -d /files/install/fai/
/files/install/fai/

|-- class

|-- disk_config

|-- doc

|-- etc

|-- fai_scripts

|-- files

| |-- boot

| |-- System.map

| |-- config

| ‘—— ymlinuz

|-- etc

| [-- X11

| |-- XF86Config
| ‘—— Xserver
|-- alternatives
|-- hosts

|-- hosts.allow
|-— hosts.deny
|-- hosts.equiv

| --— kbd

| ¢~- default.map.gz
| -- modutils

| -- nsswitch.conf
|-— printcap

| ‘—— rc2.4d

| -- modules

|-- root

| ¢~- tftpboot

| -- kernel

| -- package_config

‘-- scripts

23

6.1 Scripts for defining classes

The idea of using classes in general and using certain files matching a class name for a
configuration is adopted from the installation scripts by Casper Dik [16] for Solaris™.
This technique proved to be very useful for our SUN workstations, so we also used it for
the fully automatic installation of Linux. One simple and very efficient feature of Casper’s
scripts is to call a command with all files, whose file names are also a class. The following
loop may implement this function in a shell script:

for class in $classes
do
if [-r $config_dir/$class]; then
<command> $config_dir/$class
exit, if only the first matching file is needed
fi
done

A variation would be to call the command only for the first file that matches a class name.
Therefore it is possible to add a new file to the configuration without changing the script.
This is because the loop automaticly detects new configurations files that should be used.
Unfortunately cfengine does not support this nice feature, so all classes being used in
cfengine need also to be specified inside the cfengine scripts. Classes are very important for
the fully automatic installation. If a client belongs to class A, we say the class A is defined.
A class has no value, it is just defined or undefined. Within scripts, the variable $classes
holds a space separated list with the names of all defined classes. Classes determine how
the installation is performed. For example, an install client is configured to become a FTP
server by default. If on the other hand it belongs to the class NOFTPD, the cfengine script
disables this feature in inetd.conf.

Mostly a configuration is created by only changing or appending the classes to which
a client belongs, making the installation of a new client very easy. Thus no additional
information needs to be added to the configuration files if the existing classes suffice your
needs. There are different possibilities to define classes:

1. The name of the hostname is defined to be a class.
2. Classes may be defined within a file.
3. Classes may be defined by scripts.

The last option is a very nice feature, since these scripts will define classes automatically.
For example, several classes are defined only if certain hardware is identified. We use
Perl [7] and shell scripts to define classes. All names of classes, except the hostname, are
written in uppercase. They must not contain a hyphen, a hash or a dot, but may contain
underscores. The scripts and files in /fai/class used to define classes are listed:

S00hostname.sh : Adds the class with the hostname, which is the first class. Additionally
adds all classes that are stored in a file named as the client and the class ALL.

24

SO1lalias.sh : For all clients named roy01 to roy16, use the classes from file roy.classes.

S02memory.pl : Different classes are defined for different sizes of RAM. No yet used, for
demonstration purpose only.

S03scsi.sh : If a SCSI device is attached, it adds the class SCSI. Not yet used.

S05network_card.pl : Depending on certain network cards, a class for this card is de-
fined. These classes are used to install different loadable kernel drivers.

S07disk.pl : Defines classes depending on number of disks, their size or the overall disk-
size. Theses classes determine the disk layout.

S24nis.sh : If a NIS domain is defined in /etc/bootptab, the class NIS and a class with
the uppercase name of the NIS domain are added. Dots are replaced by underscores.

S88dataless.sh : Add class DATALESS for all hosts with prefix testclient except test-
client99. This script is not used, but for demonstration purpose.

S90scratch.sh : If the disk layout defines a partition /scratch or /files/scratch, the
classes NFS_SERVER and SCRATCH respectively FILES SCRATCH are added.
This script may use classes that are defined in SO7disk.pl.

S90tmp-partition.sh : If a separate partition for directory /tmp exists, it adds the class
TMP_PARTITION.

S99rootpw.source : Does not add a class, but defines the variable rootpw. The root
password is mandatory.

S99var.source : Defines some variables for cfengine.

roy.classes : A file containing classes for all clients with prefix roy. This file will be used
by the script SOlalias.sh.

faiserver : This file contains classes that are only used by client faiserver. SO0hostname.sh
will use this file.

For example, the script SO05network_card.pl defines the classes 3C905B and 100MBIT for
roy01. The first is used in cfengine to add a file in /etc/modutils, the latter class is
not used yet, it is only added for demonstration purpose. Client roy01 also uses the file
roy.classes to define classes. It contains a list of classes which are defined for all clients
whose hostname matches roy?? (done by S0lalias.sh). Using all these scripts, the client
roy01 belongs to these classes:

royO1l ALL DATALESS BASE NETWORK BOOT LAST REBOOT NOPCMCIA NOPPP NOTFPD
NOTELNETD NOFTPD ROY XNTP MINI_SOFT REMOTE_PRINTER HOME_CLIENT NET_9
K2_2_10 USR_LOCAL_MOUNT BIG_MEMORY 3C90X 4GB NIS INFORMATIK4711_YP
NFS_SERVER SCRATCH TMP_PARTITION

The defined classes are stored in the log file FAT_CLASSES. Hostnames should rarely be used
for the configuration files in /fai/disk_config, /fai/package_configor /fai/scripts
and subdirectories. Instead, a class is used and this class is added to the host.

25

10

15

20

25

30

35

Files that end in .source do not define classes, but may define variables for scripts that
are called later. Any system administrator may write new scripts in Perl. A fundamental
knowledge of Perl is not necessary’. There are predefined subroutines in fai.pl, which
help writing small scripts, with a very simple syntax. To prove the correctness of a new
Perl script, apply:

lichtenstein[~]> perl -wc S5bnew_script.pl
S55new_script.pl syntax 0K

Warnings about variables, used only once do not matter. Below is an example:
S07disk.pl

#! /usr/bin/perl

define classes for different disk configurations
global variables:

$numdisks # number of disks
Ydisksize {$device} # size for each devie
$sum_disk_size # sum of all disksizes

require "fai.pl";
read_disk_info();

rules for classes

two SCSI disks 2-5 GB

($numdisks == 2) and
disksize(sda,2000,5000) and
disksize(sdb,2000,5000) and
class("SD_2_5GB");

one disk 1-4 GB

($numdisks == 1) and
testsize($sum_disk_size,1000,4000) and
class("4GB");

do not edit beyond this line
exit;

sub read_disk_info {

open (DISK,"sfdisk -s|");

while (<DISK>) {

if (m!'~/dev/(.+):\s+(\d+)!) {
my ($device,$size) = ($1,$2);
$numdisks++;
push @devicelist,$device;
$size /= 2048;# blocks -> Mbytes

9Learning Perl is never wasted time.

26

40

45

$sum_disk_size += $size;
$disksize{$device} = $size;
}
}
close DISK;
}

sub disksize {

my ($disk,$lower,$upper) = 0_;
testsize($disksize{$disk},$lower, $upper);

Only between lines 13 and 24 changes or additions are allowed. The other parts of the
script should remain unchanged. The two subroutines class and classes both print out the
names of classes. The first subroutine exits the script, while the second remains to allow
further checking of conditions.

6.2 Cfengine and classes

We call cfengine, which make the changes to the installed operating system. This is where
the system is customized to our personal requirements. It is usually performed manually
by the system administrator after a successful installation. For example:

e disable ftp daemon,

e set root password,

e configure DNS lookups,

e set up NIS,

e edit /etc/fstab,

e call lilo for an other kernel,

e disable unused modules (eg. pcmcia), and

e set up E-mail.
All these changes are made automatically, if they are defined in the configuration of cfengine.
Cfengine is called for all cfengine scripts in /fai/scripts, that match the name of a defined
class. We are also using some shell scripts, but cfengine is more appropiate for this work.

The last part of the installation is mostly done by cfengine [12]. It is a tool to set up and
maintain operating systems easily. It has a rich set of commands to alter the configuration.
At present we only use it during the installation, but not for maintaining the running
system, although this is possible. Within cfengine, classes can be defined using modules,
but we did not use this feature, because all classes which could be defined from this module
before calling the module itself would have had to be declared. This is not very smart. We

need a mechanism to define classes without declaring them. We therefore pass all defined
classes to cfengine via the flag -D. Currently the following cfengine scripts are used:

27

BASE, BOOT, LAST, NETWORK, NIS, NONIS, TFTP_SERVER, X11, ALL, LAST

We tried different types of partitioning a configuration into several files, and the choice
ranged between one long configuration file to many shorter files. A solution somewhere
in the middle is probably the best choice. Often cfengine copies a “master file“ from a
source location to a destination. The root of the source location is /fai/files. The
tree structure of the normal filesystem is being preserved. So if we have a master file for
/etc/nsswitch.conf, its location is /fai/files/etc/nsswitch.conf. However in our
configuration we have two versions of nsswitch.conf, one for the class NIS and another
for class NONIS. If we need more than one version of a file, a directory for this file is
created under the same name. So /fai/files/etc/nsswitch.conf converts from a file
to a directory containing two files called NIS and NONIS. The part of the copy section of
NETWORK’s cfengine configuration file looks like this:

copy:
NIS::
${files}/etc/nsswitch.conf/NIS dest=${target}/etc/nsswitch.conf
m=644 o=root g=root
force=true backup=false
NONIS::

${files}/etc/nsswitch.conf/NONIS dest=${target}/etc/nsswitch.conf
m=644 o=root g=root
force=true backup=false

Unfortunately, cfengine provides no mechanism to shorten such twin definitions. The scripts
from Casper Dik can do this by automatically searching all files whose name is a class, and
use the first one or all, if this make sense for the operation (not with copy).

It is advisable to document the task a class performs. Using this documentation, the
creation of a configuration for a new client will become very easy because it is sufficient to
choose some classes from the available classes. Here is a short description of the available
classes. For more information the scripts have to be read.

BASE some base configurations

BOOT copy kernel and modules and call lilo

LAST remove old version of some files

NETWORK configure network related parts like printer, xntp, network, inetd
COMPILE select software packages for software development

KERNEL _SOFT installs kernel sources and kernel headers

KEYBOARD GERMAN default.map for german keyboard

MINI_SOFT minimal software list

SOFT extensive software list

28

NIS configures system as NIS client

NONIS do not use NIS

ROY several little changes

TFTP_SERVER enable tftpd and copy clusterimage and installimage to /tftpboot
XNTP configures system to use NTP (Network Time Protocol)

4GB disk layout for one disk up to 4 GB

K2_2_10 kernel version 2.2.10, System.map and .config

KONGRESS1999 some special tasks for faiserver

NET_9 network related things that belongs to our class C subnet

USR_MOUNT mount /usr from $bserver

USR_LOCAL_MOUNT mount /usr/local from $bserver
USR_LOCAL_COPY make a copy of /usr/local to local filesystem

SCRATCH export /scratch to netgroup @sundomain and @linux-cluster
FILES_SCRATCH export /files/scratch to netgroup @sundomain and linux-cluster
FAISERVER export filesystem to netgroup @fai

NOPCMCIA remove software package pcmcia

NOPPP remove software packcage ppp

3C905B module information for the network card

NFS_SERVER select software used for a nfs server

7 Conclusions

Since FAI uses mostly scripts it is very easy to install and use. It uses only use few
executables including: cfengine, perl, sfdisk, bootpc. Since only few changes to the root
filesystem are necessary during the installation, it is very easy to set up FAI. Our installation
system does not use prepared images of harddisk partitions, or save all answers to the
installation questions like other tools do. It performs all steps of a normal base installation
automatically using simple configuration data. Additionally, it configures the operating
system to the local needs.

The FAT homepage is

http://www.informatik.uni-koeln.de/fai

where you can find the newest release of FAI. There is also some information on the fully
automatic installation of Solaris. Please mail comments, bugs and suggestions to

fai@informatik.uni-koeln.de

and enjoy the fully automatic installation.

29

References

— — — — — — — — —

O 0 N oy O e s N e

=)

—

—
DN

[y
—

—
S

—
—_

—
-3

—

—_

—

—L =

—

Diskless Linux Mini Howto

NFS-Root-Client Mini Howto

Linux Partition Mini Howto

NFS-Root Mini Howto

Linux Remote-Boot Mini Howto

The Linux NIS(YP)/NYS/NIS+ HOWTO

Perl manuals

www.han.de/“gero/netboot/

www.slug.org.au/etherboot/

www.debian.org

www.nilo.org

www.iu.hioslo.no/cfengine

Solaris 7 Advanced Installation Guide, docs.sun.com
www.damtp.cam.ac.uk/linux/bootpc/
developer.intel.com/ial/WfM/wfmspecs.htm
ftp://ftp.fwi.uva.nl:/pub/solaris/auto-install/install.tar.gz
Sources of /usr/src/boot-floppies/utilities/ in Debian package boot-floppies

Bootstrapping an Infratructure: www.infrastructures.org/papers/bootstrap

30

Appendix

create_client_root.sh

1 #! /bin/sh
create_client_root.sh —-— create installation root filesystem
mounted readonly by all clients during installation process

5 installdir=/files/install/root
rcs=/files/install/fai/fai_scripts/rcS
basefile=/files/install/debian/dists/slink/main/\
disks-1386/current/base2_1.tgz
bootpc=/sbin/bootpc

10

echo ""

echo "create installation root filesystem in $installdir ?"

echo "type ctrl-c to abort, return to continue"

15 read input

if [-d $installdir 1; then
echo "$installdir must not exist. Please delete it."
exit

fi

20

set -x

mkdir -p $installdir || exit

cd $installdir

tar zxpf $basefile

25 mkdir fai

rm -f etc/mtab etc/apt/sources.list

1n -s /proc/mounts etc/mtab

mv etc/init.d/rcS etc/init.d/rcS.orig

30 # cfengine need /var/run/ writable
rm -rf var/run
1n -s /tmp/var/run var/run

#cp $rcs etc/init.d

35 # make hardlinks, so you can edit the script and
directly use the new versions

1n $rcs etc/init.d

cp $bootpc $installdir/sbin

40 set -

echo nn

echo do not forget to export $installdir
echo Add entry into /etc/exports and execute
echo killall -v -HUP rpc.mountd

31

install_base_root.sh

#! /bin/sh
install_base_root.sh
mount debian directory and unpack baseX_Y.tgz

basetgz=base2_1.tgz
mkdir $FAI_ROOT/debian
mount -o ro $FAI_PACKAGEDIR $FAI_ROOT/debian || exit

echo "Unpacking Debian $basetgz ..."
cd $FAI_ROOT
tar zxpf $FAI_RO0T/debian/dists/slink/main/disks-i386/current/$basetgz

fai.conf

all (global) variables begin with FAI (fully automatic installation)
these are global definitions for etc/init.d/rcS script

FAI_VERSION="FATI Version 1.0, Dec 1999"

Server where to mount /usr and the Debian software packages from
FAI_NFSSERVER=$SERVER # same as tftp server (:sa in /etc/bootptap)

location, where log file are stored
FAI_LOGDIR=/var/log/fai

location of master files for cfengine
FAI_FILES=/fai/files

local disk are mounted on this directory
FAI_ROOT=/tmp/target

FAI_USER: account on TFTP server, which saves all log-files and
which can change the kernel that is booted via network. Configure
.rhosts for this account, so user root can login from all install
clients without password. This account must have write permissions
for /tftpboot. We are doing this with write permissions for the
group linuxadm. chgrp linuxadm /tftpboot;chmod g+w /tftpboot

if variable is unset, this feature is disabled

FAI_USER=fai

HOoH O O O O H

full location of Debian softwarepackages
FAI_PACKAGEDIR=$FAI_NFSSERVER:/files/install/debian

export FAI_VERSION FAI_NFSSERVER FAI_LOGDIR FAI_ROOT
export FAI_USER FAI_PACKAGEDIR FAI_FILES

32

