
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 99.379

The fully automati
 installation

of a Linux
luster

by

Mattias G

�

artner, Thomas Lange,

Jens R

�

uhmkorf

1999

Institut f

�

ur Informatik

Universit

�

at zu K

�

oln

Pohligstra�e 1

D � 50969 K

�

oln

Keywords: Linux, Debian, automati
 installation, system administration

The fully automati
 installation

of a Linux
luster

Mattias G

�

artner Thomas Lange Jens R

�

uhmkorf

Institut f

�

ur Informatik, Universit

�

at zu K

�

oln

De
ember 20, 1999

Abstra
t

We present a non intera
tive system,
alled FAI (Fully Automati
 Installation), to install

a Debian Linux operating system on a PC
luster. We take one or more virgin PCs, turn on

the power and after a few minutes Linux is installed,
on�gured and running on the whole

luster, without any intera
tion ne
essary. In addition, the
on�guration
an be
hanged

automati
ally on all Linux
luster nodes. Thus we have a s
alable method for installing

and updating a
luster with little e�ort involved. We use the Debian distribution and a

olle
tion of shell- and Perl-s
ripts for the installation pro
ess. Changes to the
on�guration

�les of the operating system are made by the tool
fengine.

Keywords: Linux, Debian, automati
 installation, system administration

1

Contents

1 Motivation 3

2 Overview 3

2.1 Hardware . 3

2.2 Requirements and preliminary work . 4

2.3 Overview of the installation sequen
e . 5

3 Setting up the server 5

3.1 Pre
onditions . 5

3.2 Network daemons running on the server . 6

3.3 Creating the root �lesystem for
lients . 7

3.4 Debian software pa
kages . 7

3.5 Other exported dire
tories . 8

3.6 Building BOOTP Con�guration . 8

4 Booting
lients 10

4.1 Creating a boot
oppy . 10

4.2 Booting from
oppy . 11

4.3 Booting from network
ard . 12

5 The installation pro
ess 15

5.1 Init and setup routines . 15

5.2 De�ning
lasses . 18

5.3 Partitioning disks . 19

5.4 Software installation . 20

5.5 Main part of r
S . 21

6 The
on�guration 23

6.1 S
ripts for de�ning
lasses . 24

6.2 Cfengine and
lasses . 27

7 Con
lusions 29

Referen
es 30

Appendix 31

2

1 Motivation

Have you ever performed identi
al installations of an operating system several times? Would

you like to be able to install a Linux
luster with dozens of nodes single handedly?

Repeating the same task time and again is boring { and will surely lead to mistakes.

Also a whole lot of time
ould be saved, if the installation were done automati
ally. An

installation pro
ess with manual intera
tion does not s
ale. But
lusters have the habit

of growing over the years. Think long-term rather than plan only just a few months into

the future. When we re
eived hardware for our Linux
luster { 1 server and 16
lients

{ we de
ided to do a fully automati
 installation of the
luster. It was obvious that it

would take some time to get things to work, but also that we would save mu
h time in

the future. In the past, we had had mu
h experien
e with the installation of the Solaris

TM

operating system on SUN SPARC hardware. Solaris has an automati
 installation feature

alled JumpStart

TM

[13℄. In
onjun
tion with the auto-install s
ripts from Casper Dik[16℄

we saved a lot of time not only for every new SUN
omputer, but also for reinstallation

of existing workstations. For example, we had to build a temporary LAN with four SUN

workstations for a
onferen
e, lasting only a few days. We took these workstations out of

our normal resear
h network and set up a new installation for the
onferen
e. When it was

over, we simply integrated the workstation ba
k into the resear
h network, rebooted just

on
e, and after half an hour, everything was up and running as before. The
on�guration

of all workstations was exa
tly the same as before the
onferen
e, be
ause everything was

performed by the same installation pro
ess. We also used the automati
 installation for

reinstalling a workstation after a damaged hard disk had been repla
ed. It took two weeks

until we re
eived the new hard disk but only a few minutes after the new disk was installed,

the workstation was running as before. And this is why we
hose to adapt this te
hnique

to a PC
luster running Linux.

The
hoi
e to use Debian Linux [10℄ was made, sin
e some experien
e with this distri-

bution had been gathered. It was not possible to predi
t, if a di�erent Linux distribution

would support this kind of installation better.

The Linux
luster will be a platform for the development of software for parallel meth-

ods for the satis�ability problem (SAT) and the CATS-proje
t \Computer Aided Tram

S
heduling" as well as Also the design and implementation of eÆ
ient parallel adaptive

multigrid methods is an obje
t of resear
h.

2 Overview

2.1 Hardware

The following hardware was pur
hased for the linux
luster:

Server: named li
htenstein

� Asus P2B-DS Mainboard

� 2 � Intel Pentium II 400 Mhz

3

� 512 MByte SDRAM (PC100)

� 3Com FastEtherlink XL, 10/100 Mbit, 3
905B
hip

� Adapte
 AIC-7890/1 Ultra2 SCSI host adapter

� 2 � 9 GByte hard disk, IBM DDRS-39130D

� ATI Xpert-Work, AGP, 8 MB graphi

ard

� TEAC CD-532S, 32 x speed SCSI-CDROM

� 1.44 MB
oppy disk

16 Clients: named roy01 to roy16, ea
h equipped with

� Gigabyte 6BXD Mainboard

� 2 � Intel Pentium II 400 Mhz

� 256 MByte SDRAM (PC100)

� 3Com FastEtherlink XL, 10/100 Mbit, 3
905B
hip

� 4,3 GByte hard disk, Western Digital Caviar WDC AC24300L

� S3 Virge DX, 4 MB graphi

ard

Swit
h: 24 ports 10/100Mbit, Cis
o Catalyst C2924-XL

The overall
ost for this hardware was about 30.000 Euro (pur
hased at the end of 1998). All

lients share one keyboard and one monitor through a tree of manual keyboard and monitor

swit
h boxes. Neither keyboard nor monitor are needed for an automati
 installation.

2.2 Requirements and preliminary work

All that is needed for a fully automati
 installation is a server providing BOOTP, NFS

and TFTP servi
es. TFTP is only needed if the system is not booted from
oppy, but via

the network
ard. A server running Linux is re
ommended but not mandatory. A running

Linux system is required in order to build new kernels. A

ess to all Debian pa
kages via

NFS (mostly on the lo
al NFS server) is needed.

The
omputer to be installed {
alled install
lient

1

or
lient for short { should boot from

its network
ard or from
oppy. Time should then be invested to adjust the
on�guration

to lo
al needs. Before booting the
lients, four tasks must be performed:

� Set up BOOTP, NFS (and TFTP) servi
es on the server.

� Create a kernel image that re
ognizes the network
ard and
ould mount its root

�lesystem via NFS from the server. There is already a kernel image available, that

should work with most hardware.

� Create the root �lesystem on the server. This is used only during the installation

pro
ess, not afterwards. This applies to all
lients and is
reated by a simple s
ript.

� De�ne how the
lients should be installed (
alled
on�guration). The
on�guration

onsists of:

1

An install
lient
an also be installed as a server

4

{ partition tables for the lo
al disks

{ mount information for lo
al �lesystems

{ names of software pa
kages to be installed

{ information on
hanges and supplements for the operating system

Most of the work is spent in
reating the �rst
on�guration. On
e a suitable
on�guration

exists, a new
omputer with slightly di�erent equipment would usually require no
hange

to the
on�guration. If the requirements are however di�erent,
hanges to the existing

on�guration usually require little e�ort. It is also possible to make
hanges on a running

system rather than performing a
omplete new installation.

2.3 Overview of the installation sequen
e

During an installation the following steps are performed:

1. The
lient boots via the network or from
oppy, starting a fully fun
tional Linux

operating system without using the lo
al disk.

2. The lo
al hard disks are partitioned and empty �lesystems are
reated on all parti-

tions, if desired.

3. The sele
ted software pa
kages are installed.

4. The
hanges to the
on�guration of the operating system are
arried out.

5. The install
lient reboots from its lo
al disk and installation is
ompleted.

At present, it is safer to reboot a se
ond time, as a s
ript is exe
uted during the �rst booting

from lo
al disk. This is done automati
ally. The �rst step is also very useful if parts of the

lo
al hard disk are damaged and a ba
kup must be performed.

3 Setting up the server

3.1 Pre
onditions

A Debian Linux distribution is used to install Linux on the
lients together with
fengine

and some s
ripts. The server is
alled li
htenstein and our
lients are named roy01 through

roy16 .

Currently our
lients are installed as dataless
lients, mounting /usr and /home from the

server. All
omputers are
onne
ted dire
tly to a swit
h and are using one
lass C subnet.

We are using NIS [6℄(Network Information Servi
e, formerly known as Yellow Pages YP)

to distribute data for passwd, hosts, netgroup and other �les. Our NIS Server is a SUN

Enterprise 450 and all Linux hosts are NIS
lients. Setting up NIS will not be explained in

this paper, as it is not needed for an automati
 installation. Almost all �les for the fully

automati
 installation are lo
ated under /files/install. The three main dire
tories used

for the installation are:

5

fai/ about 5 MB, all
on�guration �les

root/ about 30 MB, untar'ed �le base2 1.tgz

debian/ about 1.2 GB, Debian 2.1 distribution with pa
kages main,
ontrib, non-free

Separate dire
tories for ea
h
lient are not required. All three dire
tories are exported read

only. The disk size needed is mainly determined only by the size of Debian pa
kages. Here

is an extra
t of the dire
tory tree of FAI, showing the main parts:

li
htenstein[/files/install℄# tree -d fai

fai/

|-- fai_s
ripts

|--
lass

|-- disk_
onfig

|-- pa
kage_
onfig

|-- s
ripts

|-- do

|-- et

|-- files

|-- kernel

All base FAI s
ripts are lo
ated in the subdire
tory fai s
ripts. The subdire
tory
lass

ontains all s
ripts and �les for de�ning
lasses for the
lients. The
on�guration for

partitioning the hard disk and mounting lo
al �lesystems are stored in disk
onfig. In-

formation for software pa
kages
an be found in pa
kage
onfig. The s
ripts that are

exe
uted at the end of the installation are stored in subdire
tory s
ripts. Templates for

�les that are
opied onto the
lients are lo
ated in files. The Subdire
tories et
 and

kernel
ontain �les for NIS and BOOTPD and the s
ripts for building di�erent kernels.

Finally, do

ontains some do
umentation.

For ea
h
lient we have to de�ne the ethernet and IP address and make an entry for

netgroup. We add this data into the NIS tables. Without using NIS these entries are made

in /et
/ethers, /et
/hosts and /et
/netgroup.

3.2 Network daemons running on the server

To enable TFTP and BOOTP on a server, the following lines are usually added to the �le

/et
/inetd.
onf or, should they already exist, they are un
ommented:

tftp dgram udp wait nobody /usr/sbin/in.tftpd in.tftpd /tftpboot/

bootps dgram udp wait root /usr/sbin/bootpd bootpd -t 120

After
hanging this �le, inetd is instru
ted to reread its
on�guration �le.

li
htenstein[~℄# killall -v -HUP inetd

Killed inetd(196)

6

Debian Linux
ontains a program killall , whi
h kills pro
esses by name. If this is not avail-

able, simply use kill -HUP <pid of pro
ess>. Normally, BOOTP requests are broad
ast

only within a subnet. If the
lients are
onne
ted to a di�erent subnet than the BOOTP

server, the router
on�guration should be altered, or a BOOTP gateway (see bootpgw(8))

should be used to forward the requests to the BOOTP server.

To enable NFS servi
e, rp
.nfsd and rp
.mountd daemons must be started. Debian

does this by exe
uting the s
ript netstd nfs (Debian version 2.0) or nfs-server (sin
e

Debian version 2.1), whi
h are lo
ated in /et
/init.d. The �le /et
/exports
ontrols

whi
h dire
tories
an be mounted by whi
h hosts. The following dire
tories must exported,

so the
lients are able to mount them:

li
htenstein[~℄>
at /et
/exports

/usr �linux-
luster(ro,no_root_squash)

/files/install/root �linux-
luster(ro,no_root_squash)

/files/install/fai �linux-
luster(ro,no_root_squash)

/files/install/debian �linux-
luster(ro,no_root_squash)

The netgroup �linux-
luster
ontains all install
lients and is distributed via NIS.

A netgroup
an also be de�ned in the �le /et
/netgroup

2

. The
ontents of the exported

dire
tories are des
ribed later in detail. After
hanging /et
/exports, the mount daemon

is instru
ted to reload its
on�guration �le in the same way as inetd .

li
htenstein[~℄# killall -v -HUP rp
.mountd

Killed rp
.mountd(23870)

3.3 Creating the root �lesystem for
lients

With Debian, it is very easy to
reate the root �lesystem, whi
h is mounted read only by

the
lients during the installation pro
ess. Debian supports a \base" root �lesystem, whi
h

in
ludes the essential pa
kages whi
h are absolute required. For Debian 2.1 (also
alled

slink) this is base2 1.tgz, whi
h
an be found in slink/main/disks-i386/
urrent/.

The s
ript
reate
lient root.sh (sour
es in the appendix) extra
ts the �les of the tar

ar
hive. As a next step, some symboli
 links to /tmp are made for the �les whi
h must be

writable. A ramdisk allows writing to �les lo
ated in /tmp. Only one missing binary and a

s
ript must be
opied into the root �lesystem. The binary /sbin/bootp
 [14℄ is a BOOTP

lient, whi
h re
eives data from a BOOTP server for a
lient and prints it. This is part

of the netstd pa
kage. The original s
ript /et
/init.d/r
S is repla
ed by the new s
ript,

whi
h performs the installation. When a
lient has booted its kernel, r
S is the �rst s
ript

whi
h is exe
uted by the init pro
ess. This s
ript
ontrols the sequen
e of the installation.

3.4 Debian software pa
kages

Ea
h
lient re
eives the software pa
kages that will be installed over the network. If several

lients are to be installed, this
ould produ
e a great amount of network traÆ
. Therefore

2

see netgroup(5) for more information

7

a lo
al
opy of all needed Debian software pa
kages is re
ommended. We are using a

lo
al
opy stored in /files/install/debian on the server. This is a
opy of Debian 2.1

retaining the dire
tory stru
ture of the Debian distribution. Figure 1 shows an extra
t of

the tree stru
ture of the Debian distribution.

li
htenstein[~℄> tree /files/install/debian -d

/files/install/debian

`-- dists

|-- Debian2.1r2 -> slink

|-- slink

| |--
ontrib

| | |-- binary-all

| | | |-- admin

| | | |-- base

| | | `-- x11

| | `-- binary-i386

| | |-- admin

| | |-- base

| | | `-- x11

| |-- main

| | |-- binary-all

| | |-- binary-i386

| | |-- disks-i386

| | | |-- 2.1.9-1999-03-03

| | | `--
urrent -> 2.1.9-1999-03-03

| | `-- upgrade-2.0-i386

| `-- non-free

| |-- binary-all

|-- stable -> slink

Figure 1: Dire
tory stru
ture for Debian (extra
t)

3.5 Other exported dire
tories

The /usr partition of a linux host must also be exported. It is mounted during the installa-

tion, so all needed binaries are available. The subdire
tory /files/install/fai
ontains

all
on�guration information and is des
ribed in se
tion 6.

3.6 Building BOOTP Con�guration

If BOOTP has been setup on the server, it must be fed with the ne
essary data. As an

example, here is our /et
/bootptab:

8

/et
/bootptab

.global.prof:\

:ms=1024:\

:sa=li
htenstein:\

:hd=/tftpboot/:\

:hn:bs=auto:\

:rp=/files/install/root:\

:ts=rubens:\

:T170="134.95.9.100:/files/install/fai":

:T171="install":\

:sm=255.255.255.0:\

:gw=134.95.9.254:\

:dn=informatik.uni-koeln.de:\

:ds=134.95.9.136,134.95.100.209,134.95.100.208:\

:ys=rubens:yd=informatik4711.YP:\

:nt=time.rrz.uni-koeln.de,time2.rrz.uni-koeln.de:

T170 is used for the lo
ation of the fai dire
tory

T171 "install" means do the installation, else exe
ute a shell

roy01:ha=0x00105a270b29:bf=roy01:t
=.global.prof:

roy02:ha=0x00105A270
08:bf=roy02:t
=.global.prof:

In this example, the BOOTP
on�guration is identi
al for all
lients. It is nevertheless

possible to de�ne di�erent NIS servers for di�erent hosts, or di�erent domain name servers

for
ertain hosts. Using di�erent dire
tories for the FAI
on�guration (T170) is not re
-

ommended, be
ause we use
lasses within FAI to spe
ify di�erent
on�gurations. The root

path should also be identi
al for all
lients, in order to save disk spa
e. Clients
an use the

same root dire
tory simultaneously, be
ause they do not have write permission for it.

With the option hn, the
lient's hostname is sent to the
lient instead of the numeri
al

IP-address. Option ms is needed, be
ause the
on�guration ex
eeds a
ertain size. Setting

bs=auto prevents de�ning the size of the boot �le, whi
h is the
on
atenation of options

hd and bf e.g., for roy01 the �lename is /tftpboot/roy01. The values of sm and gw are

used for the booting pro
ess. The network
ard will use them to
on�gure itself
orre
tly.

The following variables are later used during the
on�guration of the operating system:

ys Name of NIS server

yd Name of NIS domain

ts Time server address list

nt NTP (network time proto
ol) server list

dn Domain name that is used in resolv.
onf

ds Domain name server address list

sa TFTP server address

9

rp Root path to mount as root

T170 This is a generi
 tag. It is used for the lo
ation of the FAI dire
tory.

T171 This generi
 tag de�nes if an installation should be performed or if a shell will be

exe
uted.

There are two generi
 tags { T170 and T171. The
hoi
e of numbers are random. This

feature may be used in future to pass more data to the
lients. See �gure 2 (on page 17),

for how this data is passed to the
lient. The manual pages of bootptab(5)
ontain more

information.

4 Booting
lients

4.1 Creating a boot
oppy

There are two methods for booting the
lients. The
omputer
an boot from its network

interfa
e
ard (NIC) to re
eive the boot image via BOOTP/TFTP, or an appropriate kernel is

loaded from a
oppy. Booting from a network
ard is des
ribed is se
tion 4.3.

Should booting take pla
e from
oppy,
reating a boot
oppy is very easy for most

network
ards. The �le bzImage.install must be simply
opied onto a
oppy.

dd if=/files/install/fai/kernel/bzImage.install of=/dev/fd0

This is a bzImage (kernel version 2.0.36) with most devi
e drivers
ompiled into the kernel

and the root devi
e is
hanged with rdev(8) from /dev/hda1 to 0x00ff. The
on�guration

for
ompiling this kernel is saved into bzImage.install.
onfig. The boot
oppy
an now

be tested (see se
tion 4.2).

If this boot
oppy does not work, a new kernel has to be
ompiled. In order to
ompile

this installkernel, the BOOTP option has to be enabled, so the kernel will mount the

root �lesystem via NFS. For kernel versions up to 2.1 series, these options are lo
ated

in menu NFS filesystem support and are
alled Root file system on NFS and BOOTP

support. In kernels newer than 2.1 a
tivate Networking options -> IP: Kernel level

auto
onfiguration and Filesystems -> Network File Systems -> NFS filesystems

support -> Root file system on NFS

3

. The options ramdisk , pro
 �lesystem and rt

(real time
lo
k) support are also required, whi
h will mostly be enabled by default. The

option initrd (initial RAM disk support) must not be enabled. After
ompiling the kernel,

the default root devi
e should be
hanged in order to determined by BOOTP. The following

ommands are used to
hange it and to write the kernelimage onto a
oppy:

li
htenstein[~℄#
d /usr/sr
/linux/ar
h/i386/boot

li
htenstein[~℄# rdev bzImage

Root devi
e /dev/hda1

li
htenstein[~℄# mknod /dev/boot255
 0 255

3

Thank to Jakob Flierl for this hint. See http://www.luga.de/~
ierl/diskless suse

10

li
htenstein[~℄# rdev /dev/fd0 /dev/boot255

li
htenstein[~℄# rm -f /dev/boot255

li
htenstein[~℄# rdev bzImage

Root devi
e 0x00ff

li
htenstein[~℄# dd if=bzImage of=/dev/fd0

The �rst rdev
all shows the
urrent root devi
e for the kernel image. Then a temporary

devi
e is
reated and set with the se
ond
all of rdev. Finaly we
opy the kernel to the

oppy.

4.2 Booting from
oppy

The
oppy is tested by booting the
omputer from it. Here are some of the messages for

the
lient roy01 whi
h is booting without errors:

Loading.................

Un
ompressing Linux...done.

Now booting the kernel

.

.

Linux version 2.2.10 (root�faiserver) (g

 version 2.7.2.3)

#11 SMP Thu De
 16 12:33:01 MET 1999

Pro
essor #0 Pentium(tm) Pro APIC version 17

Pro
essor #1 Pentium(tm) Pro APIC version 17

Pro
essors: 2

Dete
ted 398944669 Hz pro
essor.

Console:
olour VGA+ 80x25

.

.

Partition
he
k:

hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 hda8 >

Sending BOOTP request...... OK

Root-NFS: Got BOOTP answer from 134.95.9.100, my address is 134.95.9.101

Root-NFS: Got file handle for /files/install/root via RPC

These are the messages seen during su

essful booting. If the
lient re
eives no response

from a BOOTP server, the following message appears:

Sending BOOTP request.............. timed out!

This means that the boot
oppy is OK, but the
omputer
an not
onne
t to a BOOTP

server. If the network
ard is not re
ognized by the kernel, the following error message is

printed:

Root-NFS unable to open at least one network devi
e

Then a new kernel with support for the installed network
ard has to be
ompiled.

11

4.3 Booting from network
ard

We distinguish two kernel. One kernel, also
alled the install kernel, is used during the

installation pro
ess. The other kernel, we named it
luster kernel

4

, is used for normal

operation when the
lient is booting from the lo
al disk. These kernels do not need to be

identi
al. Kernel version 2.0.36 (the default kernel for Debian 2.1) is
urrently used during

the installation, and version 2.2.10 is used when the
lients have booted from lo
al disk,

sin
e we are using
lients with two CPU's ea
h, and the newer kernels better support SMP

(Symmetri
 Multi Pro
essing).

For administrative purposes, booting from network
ard (NIC) is mu
h more suitable

than booting from
oppy. In order to use this boot method, a boot ROM that is able to

ommuni
ate with a BOOTP server to re
eive
ommuni
ation-related
on�guration values

su
h as network addresses and whi
h is
apable of
ommuni
ating with a TFTP-server to

obtain a boot image must be obtained. Furthermore, it must be guaranteed that the

transmitted boot image is exe
uted properly in terms of what the boot ROM expe
ts in

a boot image. Our boot ROM failed to exe
ute a bzImage, whi
h we had
reated to boot

from
oppy, so we had to �nd another solution.

Booting Linux via network
ard is be done by using either Netboot [8℄, Etherboot [9℄ or

NILO

5

. The �rst two programs are
apable of
reating a boot ROM binary (whi
h must be

programmed onto a ROM) and a
orresponding TFTP boot image whi
h in
ludes a kernel

image. Some tools, exist that help test a boot ROM image for example.

The advantage of Netboot is its ability to emulate just enough of a DOS environment

su
h that unmodi�ed DOS pa
ket driver binaries (these are usually provided with the NIC)

an be used for building a boot ROM. Etherboot, on the other hand,
reates smaller

boot ROM images; the
ompressed versions will �t in 8 KB (all NIC's should support

this size). Also Etherboot does autoprobing of the hardware addresses, while Netboot

only does autoprobing as long as the pa
ket driver supports this feature. However, the

boot ROM binary one of these programs
reated will most likely have to be burnt onto

an appropriate PROM, but if
are it taken in the
hoi
e of hardware to be bought, there

are no problems to get the network
ard to work. For our Linux
luster, however, we use

neither Netboot, Etherboot, nor a PXE-
ompliant boot ROM, but use the boot ROM

by Lanworks Te
hnologies that
omes with the 3Com-FastEtherlink XL 3
905B NICs.

Sin
e most proprietary solutions are based upon Intel's PXE-spe
i�
ation [15, 5℄ { whi
h

is supported by the Lanwork ROM
urrently is use, as well { this seems to be a rather

unusual workaround. Sin
e it works well for our purposes, we did not �nd the need to

hange the pro
edure. If it is
lear that either Netboot or Etherboot, or a solution based

on a proprietary PXE-
ompliant boot ROM will be used, this part
an be disregarded.

3Com usually equips its NICs with the Managed PC Boot Agent (MBA) ROM by

Lanwork Te
hnologies. MBA's version v3.10 worked well after we
on�gured the ROM as

follows (press Ctrl+Alt+B during boot up):

4

Sin
e we use it for our Linux
luster

5

While this do
ument is written, developments are made to the NILO proje
t[11℄. Its goal is to provide

network booting ROM - based on Linux network adaptor drivers - whi
h support the Intel PXE spe
i�
ation.

12

Managed PC Boot Agent (MBA) v3.10

(C) Copyright 1998 Lanworks Te
hnologies Co. a subsidiary of 3Com Corporation

All rights reserved.

===

Configuration

Boot Method: TCP/IP

Proto
ol: BOOTP

Default Boot: Network

Lo
al Boot: Disabled

Config Message: Enabled

Message Timeout: 3 Se
onds

Boot Failure Prompt: Wait for key

===

Use
ursor keys to edit: Up/Down
hange field, Left/Right
hange value

ESC to quit, F9 restore previous settings, F10 to save

In order to build a �le that
an be loaded via TFTP from the NIC's and that is able to

boot the kernel properly, we use the tools that are en
losed in the ROM pa
kage. The tools

require a DOS-formatted disk for booting the Linux kernel. The TFTP boot image we are

using is
reated with this disk. We use syslinux(1) to build su
h a disk:

li
htenstein[~℄# superformat /dev/fd0

Verifying
ylinder 79, head 1

mformat -s18 -t80 -h2 -S2 -M512 a:

li
htenstein[~℄# mount -t msdos /dev/fd0 /floppy/

li
htenstein[~℄#
at syslinux.
fg

TIMEOUT 40

PROMPT 0

DEFAULT bzImage

APPEND root=/dev/nfs

li
htenstein[~℄#
p syslinux.
fg /floppy/

li
htenstein[~℄#
p bzImage /floppy/

li
htenstein[~℄# umount /floppy/

li
htenstein[~℄# syslinux /dev/fd0

If the BIOS
auses trouble booting from this disk, the
ommand syslinux -s /dev/fd0 is

used. Afterwards imagegen, a tool from the MBA-software, is used on a standard MS-DOS-

omputer to build the TFTP boot image (a: denotes the disk just
reated using syslinux,

tftpboot.img denotes the TFTP boot image whi
h is to be
reated).

C:\> imagegen a: tftpboot.img

The imagegen
ommand is invoked only on
e. The image �le that is
reated by imagegen

is exa
tly 1024 bytes larger than a regular DOS-disk. Therefore all we need are these �rst

1024bytes and a working syslinux boot disk to
reate a valid TFTP boot image:

13

li
htenstein[~℄# dd if=tftpboot.img of=first_blo
k bs=1024
ount=1

1+0 re
ords in

1+0 re
ords out

li
htenstein[~℄#
p first_blo
k new_tftpboot.img

li
htenstein[~℄# dd if=/dev/fd0 of=new_tftpboot.img bs=1024 seek=1

1440+0 re
ords in

1440+0 re
ords out

li
htenstein[~℄#
p new_tftpboot.img /tftpboot/installimage

li
htenstein[~℄#
hmod a=r /tftpboot/installimage

This is all it takes to
reate a TFTP boot image. There is a shell s
ript kernel2image.sh

doing exa
tly the des
ribed operation by mounting an image of an empty DOS-disk as

loopba
k devi
e. We distinguish between 'install'-booting

6

and 'normal'-booting

7

our Linux

luster. Thus ea
h
lient has a link to one of the two di�erent boot images in /tftpboot/.

li
htenstein[...fai/kernel℄# ls -l /tftpboot/

total 2896

-r--r--r-- 1 root root 1475584 Aug 18 15:23
lusterimage

-r--r--r-- 1 root root 1475584 Aug 18 00:46 installimage

lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:47 roy01 -> installimage

lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:03 roy02 -> installimage

Boot time arguments are passed to the kernel using the
on�guration �le syslinux.
fg. Using

su
h an \append" parameter, we let the kernel, whi
h is loaded by the TFTP boot image,

boot either from root devi
e /dev/hda1 or /dev/nfs

8

. Finally, this is how the TFTP boot

images using the s
ript kernel2image.sh were a
tually build for a IDE hard disk:

li
htenstein[...fai/kernel℄# kernel2image.sh
lusterimage bzImage /dev/hda1

generate:

tftp boot image "
lusterimage" from

kernel "bzImage" with

append-param. "root=/dev/hda1"?

type
trl-
 to abort, return to
ontinue

step 1/6: generate temporary DOS-disk

step 2/6:
opy kernel to disk

step 3/6:
reate syslinux.
fg on disk

step 4/6: install syslinux

step 5/6:
opy MBA's imagegen-loader to tftp boot image

step 6/6: append DOS-disk to tftp boot image

6

Using /files/install/root as root �lesystem

7

Using the root �lesystem from /dev/hda1

8

To be exa
t, /dev/nfs is not really a devi
e, but rather a
ag to tell the kernel to get the root �lesystem via

the network.

14

1440+0 re
ords in

1440+0 re
ords out

+++ tftp boot image "
lusterimage" generated. +++

li
htenstein[...fai/kernel℄# kernel2image.sh installimage bzImage /dev/nfs

.

.

+++ tftp boot image "installimage" generated. +++

Now all information to test if the
lients
an boot with the sele
ted method is available.

Setting T171="Xinstall", the
lient boots but does not perform the installation.

5 The installation pro
ess

This se
tion explains the installation pro
ess in detail. The host roy01 is used in our

examples. After un
ompressing and su

essfully booting the kernel, the root dire
tory

is mounted (for boot messages see se
tion 4.2) and the �rst pro
ess (init) is spawned.

The �le /et
/inittab de�nes that /et
/init.d/r
S is the �rst pro
ess started by init .

Sin
e the
lient mounts its root �lesystem /files/install/root from the server, it in fa
t

exe
utes /files/install/root/et
/init.d/r
S, whi
h is the new s
ript for the fully

automati
 installation. A
opy of the s
ript resides in /files/install/fai/fai s
ripts.

The following steps are performed in r
S:

1. initialize Linux

2. setup FAI

3. de�ne
lasses

4. format lo
al disk

5. install software pa
kages

6.
all
fengine or other s
ripts

7. save log �les

8. reboot

We now des
ribe the operation of this s
ript.

5.1 Init and setup routines

First, the subroutine fai init is
alled.

fai init

1 fai_init() {

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/lo
al/sbin\

:/usr/lo
al/bin:/fai/fai_s
ripts

15

5 export PATH

umask 022

mount -n -t pro
 pro
 /pro

at /pro
/kmsg >/dev/tty4 &

10 [-x /sbin/update ℄ && update

reate_ramdisk /dev/ram0

> /tmp/FAI_INSTALLATION_IN_PROGRESS

trap 'exe
 sh' 2

dmesg > /tmp/dmesg.log

15

e
ho ""

e
ho "$0: starting fully automati
 installation FAI ..."

e
ho "Press
trl-
 to interrupt installation pro
ess and to get a shell"

20 # TODO: if timeout for bootp
 exit installation

define all bootp
 information as variables

bootp
 | sed -e 's/^/export /' > /tmp/bootp
.log

. /tmp/bootp
.log

hostname $HOSTNAME

25

if ["$T171" != "install" ℄; then

e
ho /et
/bootptab: T171 != install. Not performing FAI installation.

exe
 sh

fi

30 }

This subroutine mounts the pro
 �lesystem �rst, sin
e it
ontains information on the hard-

ware and the running system (see manuals of pro
(5)). Line 9 redire
ts all kernel messages

to a virtual
onsole that
an be viewed by typing Alt-F4. Then the update daemon is

started,
ushing the �lesystem bu�ers at a regular interval. In line 11, the subroutine

reate ramdisk is
alled to
reate a ramdisk on /dev/ram0. The ramdisk is mounted on

/tmp, where all writable �les in
luding all log �les are stored. Line 13 enables the fea-

ture to interrupt the installation pro
ess and to exe
ute a bash shell by typing
trl-
.

Debugging is therefore possible, should fun
tions not work as expe
ted. After displaying

a few messages, bootp
 is
alled. This BOOTP
lient program re
eives all data from the

BOOTP server and stores it in a temporary �le. Using the simple sed s
ript, the syntax of

the output is
hanged and used as a normal shell s
ript. Figure 2 shows the �le for
lient

roy01 . The s
ript r
S sour
es this �le and de�nes all the variables. In
o-operation with

the generi
 tags of BOOTP, a lot of information is passed to the
lient. If bootp
 prints an

error message, we
he
k /et
/bootptab or start the BOOTP daemon with debug options

enabled. The �rst step is �nished with the setting of the hostname.

The pro
edure fai setup mounts the
on�guration dire
tory and reads the global
on�g-

uration fai.
onf (see appendix, page 32). All variables with pre�x FAI are de�ned in this

�le. Before mounting /usr from the server, only a few exe
utables in /files/install/root

are available. After mounting, all programs and most libraries are available in
luding rdate,

16

li
htenstein[~℄#
at ~fai/roy01/bootp
.log

export SERVER='134.95.9.100'

export IPADDR='134.95.9.101'

export BOOTFILE='/tftpboot//roy01'

export NETMASK='255.255.255.0'

export NETWORK='134.95.9.0'

export BROADCAST='134.95.9.255'

export GATEWAYS_1='134.95.9.254'

export GATEWAYS='134.95.9.254'

export ROOT_PATH='/files/install/root'

export DNSSRVS_1='134.95.9.136'

export DNSSRVS_2='134.95.100.209'

export DNSSRVS_3='134.95.100.208'

export DNSSRVS='134.95.9.136 134.95.100.209 134.95.100.208'

export DOMAIN='informatik.uni-koeln.de'

export SEARCH='informatik.uni-koeln.de uni-koeln.de'

export YPSRVR_1='134.95.9.10'

export YPSRVR='134.95.9.10'

export YPDOMAIN='informatik4711.YP'

export TIMESRVS_1='134.95.9.10'

export TIMESRVS='134.95.9.10'

export NTPSRVS_1='134.95.100.209'

export NTPSRVS_2='134.95.170.8'

export NTPSRVS='134.95.100.209 134.95.170.8'

export HOSTNAME='roy01'

export T170='134.95.9.100:/files/install/fai'

export T171='install'

Figure 2: bootp
.log for roy01

whi
h is then exe
uted to set the lo
al time. However, the time may be shown for a di�erent

timezone. It is set
orre
tly at the end of the installation pro
ess.

fai setup

1 fai_setup() {

generi
 tag 170 (bootptab) used for lo
ation of fai dire
tory

export FAI_LOCATION=$T170

5 mount -o ro $FAI_LOCATION /fai

read global
onfig for fai

if [-r /fai/fai.
onf ℄; then

e
ho mounting FAI dire
tory from $FAI_LOCATION

. /fai/fai.
onf

10 e
ho $FAI_VERSION

e
ho ""

else

e
ho mounting $FAI_LOCATION failed

e
ho "or
an't read /fai/fai.
onf"

17

15 e
ho "Can't start fully automati
 installation."

sh

fi

after mounting /usr, we have everything needed

20 mount -o ro -n -t nfs ${FAI_NFSSERVER}:/usr /usr &&

e
ho /usr mounted from ${FAI_NFSSERVER}

rdate ${TIMESRVS_1}

}

5.2 De�ning
lasses

The subroutine de�ne
lasses is then
alled. The variable $
lasses
ontains a list of all the

lasses that are de�ned for the
lient. We also say \the
lient belongs to these
lasses".

Classes
ontrol how a
lient will be installed. This feature is des
ribed later in se
tion 6.

The subroutine de�ned
lasses
alls all s
ripts in fai/
lass, whose �le name mat
h the

pattern S[0-9℄*.{sh,pl,sour
e} (�lenames start with an upper
ase S follow by a digit

and any other
hara
ter ending in .sh, .pl or .sour
e) and whi
h are exe
utable. These

s
ripts are
alled in alphabeti
al order and print the names of the
lasses to standard output

to de�ne them. Files with post�x .sour
e need not de�ne
lasses, but are used to de�ne

variables for
fengine.

define
lasses

1 define_
lasses() {

d /fai/
lass

5 # alphabeti
al sort is important

for f in `ls S[0-9℄*.{sh,pl,sour
e}` ; do

if [-x $f ℄ && [-f $f ℄; then

[-n "$verbose" ℄ && e
ho exe
uting $f

10
ase $f in

*.pl) new
lasses=`perl $f </dev/null` ;;

*.sh) new
lasses=`sh $f </dev/null` ;;

15

sour
e files, whi
h
an set variables

*.sour
e)

[-n "$debug" ℄ && set -v

. $f </dev/null

20 [-n "$debug" ℄ && set +v

new
lasses=

;;

18

esa

25 [-n "$debug" ℄ && e
ho " new
lasses= $new
lasses"

export
lasses="$
lasses $new
lasses"

fi

done

.

30 .

}

5.3 Partitioning disks

After the
lasses are de�ned, the main installation part starts. The lo
al disks are
on�g-

ured by
alling the s
ript setup_harddisk.pl (lo
ated in /fai/fai_s
ripts). The s
ript

sear
hes for a disk
on�guration �le in /fai/disk
onfig, whose name is a
lass to whi
h

the
lient belongs. All de�nitions for the disk layout must be stored in one �le. The lo
al

disks are partitioned, and the s
ript
reates empty �lesystems on these partitions by de-

fault. Moreover, the data on a partition
an be preserved, if desired. The partitions are

mounted on $FAI_ROOT a

ording to the prede�ned mount points. The disk
on�guration

for roy01 is stored in the �le 4GB, be
ause the s
ript S07disk.pl (see page 26) de�nes this

lass for roy01 and no other
on�guration �le with name roy01 exists.

li
htenstein#
at 4GB

disk
onfiguration for one disk with 1000-4000kb

<type> <mountpoint> <size in mb> [mount options℄ [;extra options℄

disk_
onfig hda

primary / 30 rw,errors=remount-ro ;-

logi
al swap 200 rw

logi
al /var 50-200 rw

logi
al /usr 70 rw

logi
al /tmp 100-150 ;-m 0

#logi
al /s
rat
h 0- rw,nosuid ;-m 0 -i 50000

logi
al /s
rat
h preserve9 rw,nosuid ;-m 0 -i 50000

It is possible to de�ne the size, the mount point, the mount options and extra options

(mostly for mke2fs) for ea
h partition. A new �lesystem is
reated on ea
h partition by

default. However, the size and the data of a partition
an also be preserved. Preserving

data is done by spe
ifying the size as preseve<no>, whereas <no> is the devi
e number of

the partition that must remain un
hanged. If an interval is de�ned for several partition

sizes, the s
ript tries to maximize these sizes, preserving the ratio between them. A detailed

des
ription
an be found in fai/do
/README.disk
onfig.

19

5.4 Software installation

After mounting the disks, the Debian software pa
kages are installed. Debian uses a

\base" tar �le whi
h in
ludes all required software pa
kages. It is the same tar �le that

is used for
reating the root �lesystem in /files/install/root/ on the server. The

s
ript install base root.sh mounts the dire
tory
ontaining all Debian pa
kages to

/fai/debian/ and extra
ts �les from the base �le. After these pa
kages are installed,

the other ne
essary pa
kages are installed on the
lient. For this, we use the s
ript

install_pa
kages.pl, whi
h reads all
on�guration �les from /fai/pa
kage_
onfig/

mat
hing a
lass name, is used. Client roy01 only installs software de�ned in �le ROY,

be
ause it is a dataless
lient, mounting most of the software from the server. Here are two

examples for software
on�guration �les:

li
htenstein[...fai/pa
kage_
onfig℄>
at ROY

PACKAGES install

netstd lpr p
iutils sysutils time stra
e ldso

t
sh t
sh-i18n less
fengine

psmis
 psutils

ron mpi
h

li
htenstein[...fai/pa
kage_
onfig℄>
at COMPILE

pa
kages for developing software

PACKAGES install

pp bin86 binutils m4 make

lib
6-dev libg++2.8.2 libstd
++2.9-dev

g++ g

 gdb libstd
++2.9

flex g77 bya

vs

The s
ript uses the Debian
ommand apt-get(8). This new
ommand-line tool for handling

pa
kages { like dpkg(8) { is
urrently under development. Therefore, with a new versions

of apt-get , new features will be added, all of whi
h will make this part of the automati

installation more
omfortable. The
on�guration �le starts with the string PACKAGES fol-

lowed by an apt-get(8)
ommand. Currently only the
ommand install is used, but there

are some other
ommands like remove or upgrade.

Currently apt-get fails during the installation of some software pa
kages. Installing a De-

bian pa
kage
omprises several steps. It is important to realize that installing a pa
kage also

in
ludes unpa
king and
on�guring. During the
on�guration, an existing postinstall s
ript

(see /var/lib/dpkg/info/*.postinst) for this pa
kage is
alled, whi
h may exe
ute any

ommand. This is a problem for the fully automati
 installation, sin
e a
hroot $FAI_ROOT

is performed during installation via apt-get . This means that some parts of the postinstall

s
ripts fail to get their
urrent working dire
tory, or that daemon pro
esses
annot be

started or stopped. The main problem, however, are manual input requests by a post

install s
ript. This has to be suppressed, sin
e we want automati
 installation without

any manual user intera
tion. Nevertheless it was possible to install the software pa
kages

20

without any intera
tion. For this purpose yes ""| dpkg --
onfigure -a is
alled after

the installation during the �rst boot from the lo
al disk. This performs a
on�guration for

all remaining un
on�gured pa
kages as if pressing RETURN to all questions the postinstall

s
ripts would ask. This may not be elegant, but it works ! For safety, the
lient reboots

for a se
ond time later.

5.5 Main part of r
S

After installing the software pa
kages, the default
on�guration of the software will not

�t our lo
al needs. Therefore we use
fengine and some shell s
ripts as the last part of

the automati
 installation, whi
h is des
ribed in se
tion 6.2. In lines 23 to 46 the type

of the s
ript is determined and it is exe
uted. The subroutine save log stores all log �les

on the lo
al disk to $FAI LOGDIR and to the user $FAI USER on the server. Finally,

we alter the boot method, in order to hinder installation again. This is done by
hanging

the link in /tftpboot on the server, so the
lient boots another kernel, whi
h mounts its

root �lesystem not from the server, but from the lo
al disk. If the
lient was booted from

oppy, it has to be eje
ted before booting. Currently we use di�erent links in /tftpboot

to
hange the kernel being booted. The following
ode shows the main part of r
S:

r
S

1 fai_init

(# exe
ute in a subshell to get all output

fai_setup

5 define_
lasses

partition lo
al harddisks

setup_harddisks.pl > /tmp/format.log 2>&1

. /tmp/disk_var.sh

10

mount debian pa
kages and install baseX_Y.tgz

mount_pa
kages.sh

e
ho installing software may take a while

15 install_pa
kages.pl > /tmp/software.log 2>&1

exe
ute s
ripts;
fengine and shell s
ripts are known

e
ho exe
uting s
ripts

d /fai/s
ripts

20 for
lass in $
lasses ; do

if [-x $
lass ℄ && [-f $
lass ℄; then

filetype=`file $
lass`

type=

25 e
ho $filetype | grep -q "
fengine s
ript" && type=
fengine

e
ho $filetype | grep -q "shell s
ript" && type=shell

e
ho exe
uting s
ript: $
lass

ase $type in

21

30 shell)

[-n "$verbose" ℄ && e
ho "exe
uting shell: $
lass"

e
ho "===== shell: $
lass =====" >> /tmp/shell.log 2>&1

./$
lass >> /tmp/shell.log 2>&1

;;

35

fengine)

[-n "$verbose" ℄ && e
ho "exe
uting
fengine: $
lass"

e
ho "=====
fengine: $
lass =====" >> /tmp/
fengine.log 2>&1

./$
lass --no-lo
k -v -f $
lass -D${
f
lass} >> /tmp/
fengine.log 2>&1

40 ;;

*) e
ho "WARNING: unknown file type for file $filetype" ;;

esa

fi

45 done

hroot $FAI_ROOT hw
lo
k --systoh

date

e
ho "installation
ompleted."

50 rm -f /tmp/FAI_INSTALLATION_IN_PROGRESS

) 2>&1 | tee /tmp/r
S.log

if [-f /tmp/FAI_INSTALLATION_IN_PROGRESS ℄ ; then

55 e
ho Error while exe
uting
ommands in subshell.

e
ho /tmp/FAI_INSTALLATION_IN_PROGRESS was not removed.

e
ho Please look at log files for errors.

sh

fi

60

save_log

now
hange boot devi
e (lo
al disk or network)

[-n "$FAI_USER" ℄ &&

65 rsh -l $FAI_USER ${SERVER} "
d /tftpboot/ ; rm -f $HOSTNAME;\

ln -s
lusterimage $HOSTNAME"

if [! -f /tmp/REBOOT ℄ ;then

e
ho "Press <RETURN> to reboot or
trl-
 to exe
ute a shell"

70 read

fi

e
ho "rebooting now"

d /

75 syn

umount -a

exe
 /sbin/reboot -dfi

22

The installation time is mainly determined by the amount of software that is installed on

the lo
al disk. An installation of a dataless
lient needing less than 50 MB data requires

about two minutes using a 10 Mbit network
ard. An installation of a server with 310 MB

of software and the same hardware needs about eight minutes. Using option -
 in the disk

on�guration for a 3.5 GB partition extents the installation time by about seven minutes

be
ause it
he
ks for bad blo
ks.

6 The
on�guration

Most �les for the automati
 installation pro
ess are stored in the dire
tory tree displayed

below. Only bootptab and NIS information are lo
ated in other lo
ations but
opies exists

in the subdire
tory et
.

li
htenstein# tree -d /files/install/fai/

/files/install/fai/

|--
lass

|-- disk_
onfig

|-- do

|-- et

|-- fai_s
ripts

|-- files

| |-- boot

| | |-- System.map

| | |--
onfig

| | `-- vmlinuz

| |-- et

| | |-- X11

| | | |-- XF86Config

| | | `-- Xserver

| | |-- alternatives

| | |-- hosts

| | |-- hosts.allow

| | |-- hosts.deny

| | |-- hosts.equiv

| | |-- kbd

| | | `-- default.map.gz

| | |-- modutils

| | |-- nsswit
h.
onf

| | |-- print
ap

| | `-- r
2.d

| |-- modules

| |-- root

| `-- tftpboot

|-- kernel

|-- pa
kage_
onfig

`-- s
ripts

23

6.1 S
ripts for de�ning
lasses

The idea of using
lasses in general and using
ertain �les mat
hing a
lass name for a

on�guration is adopted from the installation s
ripts by Casper Dik [16℄ for Solaris

TM

.

This te
hnique proved to be very useful for our SUN workstations, so we also used it for

the fully automati
 installation of Linux. One simple and very eÆ
ient feature of Casper's

s
ripts is to
all a
ommand with all �les, whose �le names are also a
lass. The following

loop may implement this fun
tion in a shell s
ript:

for
lass in $
lasses

do

if [-r $
onfig_dir/$
lass ℄; then

<
ommand> $
onfig_dir/$
lass

exit, if only the first mat
hing file is needed

fi

done

A variation would be to
all the
ommand only for the �rst �le that mat
hes a
lass name.

Therefore it is possible to add a new �le to the
on�guration without
hanging the s
ript.

This is be
ause the loop automati
ly dete
ts new
on�gurations �les that should be used.

Unfortunately
fengine does not support this ni
e feature, so all
lasses being used in

fengine need also to be spe
i�ed inside the
fengine s
ripts. Classes are very important for

the fully automati
 installation. If a
lient belongs to
lass A, we say the
lass A is de�ned.

A
lass has no value, it is just de�ned or unde�ned. Within s
ripts, the variable $
lasses

holds a spa
e separated list with the names of all de�ned
lasses. Classes determine how

the installation is performed. For example, an install
lient is
on�gured to be
ome a FTP

server by default. If on the other hand it belongs to the
lass NOFTPD, the
fengine s
ript

disables this feature in inetd.
onf.

Mostly a
on�guration is
reated by only
hanging or appending the
lasses to whi
h

a
lient belongs, making the installation of a new
lient very easy. Thus no additional

information needs to be added to the
on�guration �les if the existing
lasses suÆ
e your

needs. There are di�erent possibilities to de�ne
lasses:

1. The name of the hostname is de�ned to be a
lass.

2. Classes may be de�ned within a �le.

3. Classes may be de�ned by s
ripts.

The last option is a very ni
e feature, sin
e these s
ripts will de�ne
lasses automati
ally.

For example, several
lasses are de�ned only if
ertain hardware is identi�ed. We use

Perl [7℄ and shell s
ripts to de�ne
lasses. All names of
lasses, ex
ept the hostname, are

written in upper
ase. They must not
ontain a hyphen, a hash or a dot, but may
ontain

unders
ores. The s
ripts and �les in /fai/
lass used to de�ne
lasses are listed:

S00hostname.sh : Adds the
lass with the hostname, whi
h is the �rst
lass. Additionally

adds all
lasses that are stored in a �le named as the
lient and the
lass ALL.

24

S01alias.sh : For all
lients named roy01 to roy16, use the
lasses from �le roy.
lasses.

S02memory.pl : Di�erent
lasses are de�ned for di�erent sizes of RAM. No yet used, for

demonstration purpose only.

S03s
si.sh : If a SCSI devi
e is atta
hed, it adds the
lass SCSI . Not yet used.

S05network
ard.pl : Depending on
ertain network
ards, a
lass for this
ard is de-

�ned. These
lasses are used to install di�erent loadable kernel drivers.

S07disk.pl : De�nes
lasses depending on number of disks, their size or the overall disk-

size. Theses
lasses determine the disk layout.

S24nis.sh : If a NIS domain is de�ned in /et
/bootptab, the
lass NIS and a
lass with

the upper
ase name of the NIS domain are added. Dots are repla
ed by unders
ores.

S88dataless.sh : Add
lass DATALESS for all hosts with pre�x test
lient ex
ept test-

lient99 . This s
ript is not used, but for demonstration purpose.

S90s
rat
h.sh : If the disk layout de�nes a partition /s
rat
h or /files/s
rat
h, the

lasses NFS SERVER and SCRATCH respe
tively FILES SCRATCH are added.

This s
ript may use
lasses that are de�ned in S07disk.pl.

S90tmp-partition.sh : If a separate partition for dire
tory /tmp exists, it adds the
lass

TMP PARTITION .

S99rootpw.sour
e : Does not add a
lass, but de�nes the variable rootpw . The root

password is mandatory.

S99var.sour
e : De�nes some variables for
fengine.

roy.
lasses : A �le
ontaining
lasses for all
lients with pre�x roy . This �le will be used

by the s
ript S01alias.sh.

faiserver : This �le
ontains
lasses that are only used by
lient faiserver . S00hostname.sh

will use this �le.

For example, the s
ript S05network
ard.pl de�nes the
lasses 3C905B and 100MBIT for

roy01 . The �rst is used in
fengine to add a �le in /et
/modutils, the latter
lass is

not used yet, it is only added for demonstration purpose. Client roy01 also uses the �le

roy.
lasses to de�ne
lasses. It
ontains a list of
lasses whi
h are de�ned for all
lients

whose hostname mat
hes roy?? (done by S01alias.sh). Using all these s
ripts, the
lient

roy01 belongs to these
lasses:

roy01 ALL DATALESS BASE NETWORK BOOT LAST REBOOT NOPCMCIA NOPPP NOTFPD

NOTELNETD NOFTPD ROY XNTP MINI_SOFT REMOTE_PRINTER HOME_CLIENT NET_9

K2_2_10 USR_LOCAL_MOUNT BIG_MEMORY 3C90X 4GB NIS INFORMATIK4711_YP

NFS_SERVER SCRATCH TMP_PARTITION

The de�ned
lasses are stored in the log �le FAI CLASSES. Hostnames should rarely be used

for the
on�guration �les in /fai/disk_
onfig, /fai/pa
kage_
onfig or /fai/s
ripts

and subdire
tories. Instead, a
lass is used and this
lass is added to the host.

25

Files that end in .sour
e do not de�ne
lasses, but may de�ne variables for s
ripts that

are
alled later. Any system administrator may write new s
ripts in Perl. A fundamental

knowledge of Perl is not ne
essary

9

. There are prede�ned subroutines in fai.pl, whi
h

help writing small s
ripts, with a very simple syntax. To prove the
orre
tness of a new

Perl s
ript, apply:

li
htenstein[~℄> perl -w
 S55new_s
ript.pl

S55new_s
ript.pl syntax OK

Warnings about variables, used only on
e do not matter. Below is an example:

S07disk.pl

1 #! /usr/bin/perl

define
lasses for different disk
onfigurations

global variables:

5 # $numdisks # number of disks

%disksize {$devi
e} # size for ea
h devie

$sum_disk_size # sum of all disksizes

require "fai.pl";

10 read_disk_info();

rules for
lasses

#---

two SCSI disks 2-5 GB

15 ($numdisks == 2) and

disksize(sda,2000,5000) and

disksize(sdb,2000,5000) and

lass("SD_2_5GB");

20 # one disk 1-4 GB

($numdisks == 1) and

testsize($sum_disk_size,1000,4000) and

lass("4GB");

#---

25 # do not edit beyond this line

exit;

-

sub read_disk_info {

open (DISK,"sfdisk -s|");

30 while (<DISK>) {

if (m!^/dev/(.+):\s+(\d+)!) {

my ($devi
e,$size) = ($1,$2);

$numdisks++;

push �devi
elist,$devi
e;

35 $size /= 2048;# blo
ks -> Mbytes

9

Learning Perl is never wasted time.

26

$sum_disk_size += $size;

$disksize{$devi
e} = $size;

}

}

40
lose DISK;

}

sub disksize {

45 my ($disk,$lower,$upper) = �_;

testsize($disksize{$disk},$lower,$upper);

}

Only between lines 13 and 24
hanges or additions are allowed. The other parts of the

s
ript should remain un
hanged. The two subroutines
lass and
lasses both print out the

names of
lasses. The �rst subroutine exits the s
ript, while the se
ond remains to allow

further
he
king of
onditions.

6.2 Cfengine and
lasses

We
all
fengine, whi
h make the
hanges to the installed operating system. This is where

the system is
ustomized to our personal requirements. It is usually performed manually

by the system administrator after a su

essful installation. For example:

� disable ftp daemon,

� set root password,

�
on�gure DNS lookups,

� set up NIS,

� edit /et
/fstab,

�
all lilo for an other kernel,

� disable unused modules (eg. p
m
ia), and

� set up E-mail.

All these
hanges are made automati
ally, if they are de�ned in the
on�guration of
fengine.

Cfengine is
alled for all
fengine s
ripts in /fai/s
ripts, that mat
h the name of a de�ned

lass. We are also using some shell s
ripts, but
fengine is more appropiate for this work.

The last part of the installation is mostly done by
fengine [12℄. It is a tool to set up and

maintain operating systems easily. It has a ri
h set of
ommands to alter the
on�guration.

At present we only use it during the installation, but not for maintaining the running

system, although this is possible. Within
fengine,
lasses
an be de�ned using modules,

but we did not use this feature, be
ause all
lasses whi
h
ould be de�ned from this module

before
alling the module itself would have had to be de
lared. This is not very smart. We

need a me
hanism to de�ne
lasses without de
laring them. We therefore pass all de�ned

lasses to
fengine via the
ag -D. Currently the following
fengine s
ripts are used:

27

BASE, BOOT, LAST, NETWORK, NIS, NONIS, TFTP_SERVER, X11, ALL, LAST

We tried di�erent types of partitioning a
on�guration into several �les, and the
hoi
e

ranged between one long
on�guration �le to many shorter �les. A solution somewhere

in the middle is probably the best
hoi
e. Often
fengine
opies a \master �le\ from a

sour
e lo
ation to a destination. The root of the sour
e lo
ation is /fai/files. The

tree stru
ture of the normal �lesystem is being preserved. So if we have a master �le for

/et
/nsswit
h.
onf, its lo
ation is /fai/files/et
/nsswit
h.
onf. However in our

on�guration we have two versions of nsswit
h.
onf, one for the
lass NIS and another

for
lass NONIS . If we need more than one version of a �le, a dire
tory for this �le is

reated under the same name. So /fai/files/et
/nsswit
h.
onf
onverts from a �le

to a dire
tory
ontaining two �les
alled NIS and NONIS. The part of the
opy se
tion of

NETWORK's
fengine
on�guration �le looks like this:

opy:

NIS::

${files}/et
/nsswit
h.
onf/NIS dest=${target}/et
/nsswit
h.
onf

m=644 o=root g=root

for
e=true ba
kup=false

NONIS::

${files}/et
/nsswit
h.
onf/NONIS dest=${target}/et
/nsswit
h.
onf

m=644 o=root g=root

for
e=true ba
kup=false

Unfortunately,
fengine provides no me
hanism to shorten su
h twin de�nitions. The s
ripts

from Casper Dik
an do this by automati
ally sear
hing all �les whose name is a
lass, and

use the �rst one or all, if this make sense for the operation (not with
opy).

It is advisable to do
ument the task a
lass performs. Using this do
umentation, the

reation of a
on�guration for a new
lient will be
ome very easy be
ause it is suÆ
ient to

hoose some
lasses from the available
lasses. Here is a short des
ription of the available

lasses. For more information the s
ripts have to be read.

BASE some base
on�gurations

BOOT
opy kernel and modules and
all lilo

LAST remove old version of some �les

NETWORK
on�gure network related parts like printer, xntp, network, inetd

COMPILE sele
t software pa
kages for software development

KERNEL SOFT installs kernel sour
es and kernel headers

KEYBOARD GERMAN default.map for german keyboard

MINI SOFT minimal software list

SOFT extensive software list

28

NIS
on�gures system as NIS
lient

NONIS do not use NIS

ROY several little
hanges

TFTP SERVER enable tftpd and
opy
lusterimage and installimage to /tftpboot

XNTP
on�gures system to use NTP (Network Time Proto
ol)

4GB disk layout for one disk up to 4 GB

K2 2 10 kernel version 2.2.10, System.map and .
on�g

KONGRESS1999 some spe
ial tasks for faiserver

NET 9 network related things that belongs to our
lass C subnet

USR MOUNT mount /usr from $bserver

USR LOCAL MOUNT mount /usr/lo
al from $bserver

USR LOCAL COPY make a
opy of /usr/lo
al to lo
al �lesystem

SCRATCH export /s
rat
h to netgroup �sundomain and �linux-
luster

FILES SCRATCH export /files/s
rat
h to netgroup �sundomain and linux-
luster

FAISERVER export �lesystem to netgroup �fai

NOPCMCIA remove software pa
kage p
m
ia

NOPPP remove software pa
k
age ppp

3C905B module information for the network
ard

NFS SERVER sele
t software used for a nfs server

7 Con
lusions

Sin
e FAI uses mostly s
ripts it is very easy to install and use. It uses only use few

exe
utables in
luding:
fengine, perl, sfdisk, bootp
. Sin
e only few
hanges to the root

�lesystem are ne
essary during the installation, it is very easy to set up FAI. Our installation

system does not use prepared images of harddisk partitions, or save all answers to the

installation questions like other tools do. It performs all steps of a normal base installation

automati
ally using simple
on�guration data. Additionally, it
on�gures the operating

system to the lo
al needs.

The FAI homepage is

http://www.informatik.uni-koeln.de/fai

where you
an �nd the newest release of FAI. There is also some information on the fully

automati
 installation of Solaris. Please mail
omments, bugs and suggestions to

fai�informatik.uni-koeln.de

and enjoy the fully automati
 installation.

29

Referen
es

[1℄ Diskless Linux Mini Howto

[2℄ NFS-Root-Client Mini Howto

[3℄ Linux Partition Mini Howto

[4℄ NFS-Root Mini Howto

[5℄ Linux Remote-Boot Mini Howto

[6℄ The Linux NIS(YP)/NYS/NIS+ HOWTO

[7℄ Perl manuals

[8℄ www.han.de/~gero/netboot/

[9℄ www.slug.org.au/etherboot/

[10℄ www.debian.org

[11℄ www.nilo.org

[12℄ www.iu.hioslo.no/
fengine

[13℄ Solaris 7 Advan
ed Installation Guide, do
s.sun.
om

[14℄ www.damtp.
am.a
.uk/linux/bootp
/

[15℄ developer.intel.
om/ial/WfM/wfmspe
s.htm

[16℄ ftp://ftp.fwi.uva.nl:/pub/solaris/auto-install/install.tar.gz

[17℄ Sour
es of /usr/sr
/boot-
oppies/utilities/ in Debian pa
kage boot-
oppies

[18℄ Bootstrapping an Infratru
ture: www.infrastru
tures.org/papers/bootstrap

30

Appendix

reate
lient root.sh

1 #! /bin/sh

reate_
lient_root.sh --
reate installation root filesystem

mounted readonly by all
lients during installation pro
ess

5 installdir=/files/install/root

r
s=/files/install/fai/fai_s
ripts/r
S

basefile=/files/install/debian/dists/slink/main/\

disks-i386/
urrent/base2_1.tgz

bootp
=/sbin/bootp

10

e
ho ""

e
ho "
reate installation root filesystem in $installdir ?"

e
ho "type
trl-
 to abort, return to
ontinue"

15 read input

if [-d $installdir ℄; then

e
ho "$installdir must not exist. Please delete it."

exit

fi

20

set -x

mkdir -p $installdir || exit

d $installdir

tar zxpf $basefile

25 mkdir fai

rm -f et
/mtab et
/apt/sour
es.list

ln -s /pro
/mounts et
/mtab

mv et
/init.d/r
S et
/init.d/r
S.orig

30 #
fengine need /var/run/ writable

rm -rf var/run

ln -s /tmp/var/run var/run

#
p $r
s et
/init.d

35 # make hardlinks, so you
an edit the s
ript and

dire
tly use the new versions

ln $r
s et
/init.d

p $bootp
 $installdir/sbin

40 set -

e
ho ""

e
ho do not forget to export $installdir

e
ho Add entry into /et
/exports and exe
ute

e
ho killall -v -HUP rp
.mountd

31

install base root.sh

#! /bin/sh

install_base_root.sh

mount debian dire
tory and unpa
k baseX_Y.tgz

basetgz=base2_1.tgz

mkdir $FAI_ROOT/debian

mount -o ro $FAI_PACKAGEDIR $FAI_ROOT/debian || exit

e
ho "Unpa
king Debian $basetgz ..."

d $FAI_ROOT

tar zxpf $FAI_ROOT/debian/dists/slink/main/disks-i386/
urrent/$basetgz

fai.
onf

all (global) variables begin with FAI (fully automati
 installation)

these are global definitions for et
/init.d/r
S s
ript

FAI_VERSION="FAI Version 1.0, De
 1999"

Server where to mount /usr and the Debian software pa
kages from

FAI_NFSSERVER=$SERVER # same as tftp server (:sa in /et
/bootptap)

lo
ation, where log file are stored

FAI_LOGDIR=/var/log/fai

lo
ation of master files for
fengine

FAI_FILES=/fai/files

lo
al disk are mounted on this dire
tory

FAI_ROOT=/tmp/target

FAI_USER: a

ount on TFTP server, whi
h saves all log-files and

whi
h
an
hange the kernel that is booted via network. Configure

.rhosts for this a

ount, so user root
an login from all install

lients without password. This a

ount must have write permissions

for /tftpboot. We are doing this with write permissions for the

group linuxadm.
hgrp linuxadm /tftpboot;
hmod g+w /tftpboot

if variable is unset, this feature is disabled

FAI_USER=fai

full lo
ation of Debian softwarepa
kages

FAI_PACKAGEDIR=$FAI_NFSSERVER:/files/install/debian

export FAI_VERSION FAI_NFSSERVER FAI_LOGDIR FAI_ROOT

export FAI_USER FAI_PACKAGEDIR FAI_FILES

32

