
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 99.379

The fully automati installation

of a Linux luster

by

Mattias G

�

artner, Thomas Lange,

Jens R

�

uhmkorf

1999

Institut f

�

ur Informatik

Universit

�

at zu K

�

oln

Pohligstra�e 1

D � 50969 K

�

oln

Keywords: Linux, Debian, automati installation, system administration

The fully automati installation

of a Linux luster

Mattias G

�

artner Thomas Lange Jens R

�

uhmkorf

Institut f

�

ur Informatik, Universit

�

at zu K

�

oln

Deember 20, 1999

Abstrat

We present a non interative system, alled FAI (Fully Automati Installation), to install

a Debian Linux operating system on a PC luster. We take one or more virgin PCs, turn on

the power and after a few minutes Linux is installed, on�gured and running on the whole

luster, without any interation neessary. In addition, the on�guration an be hanged

automatially on all Linux luster nodes. Thus we have a salable method for installing

and updating a luster with little e�ort involved. We use the Debian distribution and a

olletion of shell- and Perl-sripts for the installation proess. Changes to the on�guration

�les of the operating system are made by the tool fengine.

Keywords: Linux, Debian, automati installation, system administration

1

Contents

1 Motivation 3

2 Overview 3

2.1 Hardware . 3

2.2 Requirements and preliminary work . 4

2.3 Overview of the installation sequene . 5

3 Setting up the server 5

3.1 Preonditions . 5

3.2 Network daemons running on the server . 6

3.3 Creating the root �lesystem for lients . 7

3.4 Debian software pakages . 7

3.5 Other exported diretories . 8

3.6 Building BOOTP Con�guration . 8

4 Booting lients 10

4.1 Creating a boot oppy . 10

4.2 Booting from oppy . 11

4.3 Booting from network ard . 12

5 The installation proess 15

5.1 Init and setup routines . 15

5.2 De�ning lasses . 18

5.3 Partitioning disks . 19

5.4 Software installation . 20

5.5 Main part of rS . 21

6 The on�guration 23

6.1 Sripts for de�ning lasses . 24

6.2 Cfengine and lasses . 27

7 Conlusions 29

Referenes 30

Appendix 31

2

1 Motivation

Have you ever performed idential installations of an operating system several times? Would

you like to be able to install a Linux luster with dozens of nodes single handedly?

Repeating the same task time and again is boring { and will surely lead to mistakes.

Also a whole lot of time ould be saved, if the installation were done automatially. An

installation proess with manual interation does not sale. But lusters have the habit

of growing over the years. Think long-term rather than plan only just a few months into

the future. When we reeived hardware for our Linux luster { 1 server and 16 lients

{ we deided to do a fully automati installation of the luster. It was obvious that it

would take some time to get things to work, but also that we would save muh time in

the future. In the past, we had had muh experiene with the installation of the Solaris

TM

operating system on SUN SPARC hardware. Solaris has an automati installation feature

alled JumpStart

TM

[13℄. In onjuntion with the auto-install sripts from Casper Dik[16℄

we saved a lot of time not only for every new SUN omputer, but also for reinstallation

of existing workstations. For example, we had to build a temporary LAN with four SUN

workstations for a onferene, lasting only a few days. We took these workstations out of

our normal researh network and set up a new installation for the onferene. When it was

over, we simply integrated the workstation bak into the researh network, rebooted just

one, and after half an hour, everything was up and running as before. The on�guration

of all workstations was exatly the same as before the onferene, beause everything was

performed by the same installation proess. We also used the automati installation for

reinstalling a workstation after a damaged hard disk had been replaed. It took two weeks

until we reeived the new hard disk but only a few minutes after the new disk was installed,

the workstation was running as before. And this is why we hose to adapt this tehnique

to a PC luster running Linux.

The hoie to use Debian Linux [10℄ was made, sine some experiene with this distri-

bution had been gathered. It was not possible to predit, if a di�erent Linux distribution

would support this kind of installation better.

The Linux luster will be a platform for the development of software for parallel meth-

ods for the satis�ability problem (SAT) and the CATS-projet \Computer Aided Tram

Sheduling" as well as Also the design and implementation of eÆient parallel adaptive

multigrid methods is an objet of researh.

2 Overview

2.1 Hardware

The following hardware was purhased for the linux luster:

Server: named lihtenstein

� Asus P2B-DS Mainboard

� 2 � Intel Pentium II 400 Mhz

3

� 512 MByte SDRAM (PC100)

� 3Com FastEtherlink XL, 10/100 Mbit, 3905B hip

� Adapte AIC-7890/1 Ultra2 SCSI host adapter

� 2 � 9 GByte hard disk, IBM DDRS-39130D

� ATI Xpert-Work, AGP, 8 MB graphi ard

� TEAC CD-532S, 32 x speed SCSI-CDROM

� 1.44 MB oppy disk

16 Clients: named roy01 to roy16, eah equipped with

� Gigabyte 6BXD Mainboard

� 2 � Intel Pentium II 400 Mhz

� 256 MByte SDRAM (PC100)

� 3Com FastEtherlink XL, 10/100 Mbit, 3905B hip

� 4,3 GByte hard disk, Western Digital Caviar WDC AC24300L

� S3 Virge DX, 4 MB graphi ard

Swith: 24 ports 10/100Mbit, Ciso Catalyst C2924-XL

The overall ost for this hardware was about 30.000 Euro (purhased at the end of 1998). All

lients share one keyboard and one monitor through a tree of manual keyboard and monitor

swith boxes. Neither keyboard nor monitor are needed for an automati installation.

2.2 Requirements and preliminary work

All that is needed for a fully automati installation is a server providing BOOTP, NFS

and TFTP servies. TFTP is only needed if the system is not booted from oppy, but via

the network ard. A server running Linux is reommended but not mandatory. A running

Linux system is required in order to build new kernels. Aess to all Debian pakages via

NFS (mostly on the loal NFS server) is needed.

The omputer to be installed { alled install lient

1

or lient for short { should boot from

its network ard or from oppy. Time should then be invested to adjust the on�guration

to loal needs. Before booting the lients, four tasks must be performed:

� Set up BOOTP, NFS (and TFTP) servies on the server.

� Create a kernel image that reognizes the network ard and ould mount its root

�lesystem via NFS from the server. There is already a kernel image available, that

should work with most hardware.

� Create the root �lesystem on the server. This is used only during the installation

proess, not afterwards. This applies to all lients and is reated by a simple sript.

� De�ne how the lients should be installed (alled on�guration). The on�guration

onsists of:

1

An install lient an also be installed as a server

4

{ partition tables for the loal disks

{ mount information for loal �lesystems

{ names of software pakages to be installed

{ information on hanges and supplements for the operating system

Most of the work is spent in reating the �rst on�guration. One a suitable on�guration

exists, a new omputer with slightly di�erent equipment would usually require no hange

to the on�guration. If the requirements are however di�erent, hanges to the existing

on�guration usually require little e�ort. It is also possible to make hanges on a running

system rather than performing a omplete new installation.

2.3 Overview of the installation sequene

During an installation the following steps are performed:

1. The lient boots via the network or from oppy, starting a fully funtional Linux

operating system without using the loal disk.

2. The loal hard disks are partitioned and empty �lesystems are reated on all parti-

tions, if desired.

3. The seleted software pakages are installed.

4. The hanges to the on�guration of the operating system are arried out.

5. The install lient reboots from its loal disk and installation is ompleted.

At present, it is safer to reboot a seond time, as a sript is exeuted during the �rst booting

from loal disk. This is done automatially. The �rst step is also very useful if parts of the

loal hard disk are damaged and a bakup must be performed.

3 Setting up the server

3.1 Preonditions

A Debian Linux distribution is used to install Linux on the lients together with fengine

and some sripts. The server is alled lihtenstein and our lients are named roy01 through

roy16 .

Currently our lients are installed as dataless lients, mounting /usr and /home from the

server. All omputers are onneted diretly to a swith and are using one lass C subnet.

We are using NIS [6℄(Network Information Servie, formerly known as Yellow Pages YP)

to distribute data for passwd, hosts, netgroup and other �les. Our NIS Server is a SUN

Enterprise 450 and all Linux hosts are NIS lients. Setting up NIS will not be explained in

this paper, as it is not needed for an automati installation. Almost all �les for the fully

automati installation are loated under /files/install. The three main diretories used

for the installation are:

5

fai/ about 5 MB, all on�guration �les

root/ about 30 MB, untar'ed �le base2 1.tgz

debian/ about 1.2 GB, Debian 2.1 distribution with pakages main, ontrib, non-free

Separate diretories for eah lient are not required. All three diretories are exported read

only. The disk size needed is mainly determined only by the size of Debian pakages. Here

is an extrat of the diretory tree of FAI, showing the main parts:

lihtenstein[/files/install℄# tree -d fai

fai/

|-- fai_sripts

|-- lass

|-- disk_onfig

|-- pakage_onfig

|-- sripts

|-- do

|-- et

|-- files

|-- kernel

All base FAI sripts are loated in the subdiretory fai sripts. The subdiretory lass

ontains all sripts and �les for de�ning lasses for the lients. The on�guration for

partitioning the hard disk and mounting loal �lesystems are stored in disk onfig. In-

formation for software pakages an be found in pakage onfig. The sripts that are

exeuted at the end of the installation are stored in subdiretory sripts. Templates for

�les that are opied onto the lients are loated in files. The Subdiretories et and

kernel ontain �les for NIS and BOOTPD and the sripts for building di�erent kernels.

Finally, do ontains some doumentation.

For eah lient we have to de�ne the ethernet and IP address and make an entry for

netgroup. We add this data into the NIS tables. Without using NIS these entries are made

in /et/ethers, /et/hosts and /et/netgroup.

3.2 Network daemons running on the server

To enable TFTP and BOOTP on a server, the following lines are usually added to the �le

/et/inetd.onf or, should they already exist, they are unommented:

tftp dgram udp wait nobody /usr/sbin/in.tftpd in.tftpd /tftpboot/

bootps dgram udp wait root /usr/sbin/bootpd bootpd -t 120

After hanging this �le, inetd is instruted to reread its on�guration �le.

lihtenstein[~℄# killall -v -HUP inetd

Killed inetd(196)

6

Debian Linux ontains a program killall , whih kills proesses by name. If this is not avail-

able, simply use kill -HUP <pid of proess>. Normally, BOOTP requests are broadast

only within a subnet. If the lients are onneted to a di�erent subnet than the BOOTP

server, the router on�guration should be altered, or a BOOTP gateway (see bootpgw(8))

should be used to forward the requests to the BOOTP server.

To enable NFS servie, rp.nfsd and rp.mountd daemons must be started. Debian

does this by exeuting the sript netstd nfs (Debian version 2.0) or nfs-server (sine

Debian version 2.1), whih are loated in /et/init.d. The �le /et/exports ontrols

whih diretories an be mounted by whih hosts. The following diretories must exported,

so the lients are able to mount them:

lihtenstein[~℄> at /et/exports

/usr �linux-luster(ro,no_root_squash)

/files/install/root �linux-luster(ro,no_root_squash)

/files/install/fai �linux-luster(ro,no_root_squash)

/files/install/debian �linux-luster(ro,no_root_squash)

The netgroup �linux-luster ontains all install lients and is distributed via NIS.

A netgroup an also be de�ned in the �le /et/netgroup

2

. The ontents of the exported

diretories are desribed later in detail. After hanging /et/exports, the mount daemon

is instruted to reload its on�guration �le in the same way as inetd .

lihtenstein[~℄# killall -v -HUP rp.mountd

Killed rp.mountd(23870)

3.3 Creating the root �lesystem for lients

With Debian, it is very easy to reate the root �lesystem, whih is mounted read only by

the lients during the installation proess. Debian supports a \base" root �lesystem, whih

inludes the essential pakages whih are absolute required. For Debian 2.1 (also alled

slink) this is base2 1.tgz, whih an be found in slink/main/disks-i386/urrent/.

The sript reate lient root.sh (soures in the appendix) extrats the �les of the tar

arhive. As a next step, some symboli links to /tmp are made for the �les whih must be

writable. A ramdisk allows writing to �les loated in /tmp. Only one missing binary and a

sript must be opied into the root �lesystem. The binary /sbin/bootp [14℄ is a BOOTP

lient, whih reeives data from a BOOTP server for a lient and prints it. This is part

of the netstd pakage. The original sript /et/init.d/rS is replaed by the new sript,

whih performs the installation. When a lient has booted its kernel, rS is the �rst sript

whih is exeuted by the init proess. This sript ontrols the sequene of the installation.

3.4 Debian software pakages

Eah lient reeives the software pakages that will be installed over the network. If several

lients are to be installed, this ould produe a great amount of network traÆ. Therefore

2

see netgroup(5) for more information

7

a loal opy of all needed Debian software pakages is reommended. We are using a

loal opy stored in /files/install/debian on the server. This is a opy of Debian 2.1

retaining the diretory struture of the Debian distribution. Figure 1 shows an extrat of

the tree struture of the Debian distribution.

lihtenstein[~℄> tree /files/install/debian -d

/files/install/debian

`-- dists

|-- Debian2.1r2 -> slink

|-- slink

| |-- ontrib

| | |-- binary-all

| | | |-- admin

| | | |-- base

| | | `-- x11

| | `-- binary-i386

| | |-- admin

| | |-- base

| | | `-- x11

| |-- main

| | |-- binary-all

| | |-- binary-i386

| | |-- disks-i386

| | | |-- 2.1.9-1999-03-03

| | | `-- urrent -> 2.1.9-1999-03-03

| | `-- upgrade-2.0-i386

| `-- non-free

| |-- binary-all

|-- stable -> slink

Figure 1: Diretory struture for Debian (extrat)

3.5 Other exported diretories

The /usr partition of a linux host must also be exported. It is mounted during the installa-

tion, so all needed binaries are available. The subdiretory /files/install/fai ontains

all on�guration information and is desribed in setion 6.

3.6 Building BOOTP Con�guration

If BOOTP has been setup on the server, it must be fed with the neessary data. As an

example, here is our /et/bootptab:

8

/et/bootptab

.global.prof:\

:ms=1024:\

:sa=lihtenstein:\

:hd=/tftpboot/:\

:hn:bs=auto:\

:rp=/files/install/root:\

:ts=rubens:\

:T170="134.95.9.100:/files/install/fai":

:T171="install":\

:sm=255.255.255.0:\

:gw=134.95.9.254:\

:dn=informatik.uni-koeln.de:\

:ds=134.95.9.136,134.95.100.209,134.95.100.208:\

:ys=rubens:yd=informatik4711.YP:\

:nt=time.rrz.uni-koeln.de,time2.rrz.uni-koeln.de:

T170 is used for the loation of the fai diretory

T171 "install" means do the installation, else exeute a shell

roy01:ha=0x00105a270b29:bf=roy01:t=.global.prof:

roy02:ha=0x00105A27008:bf=roy02:t=.global.prof:

In this example, the BOOTP on�guration is idential for all lients. It is nevertheless

possible to de�ne di�erent NIS servers for di�erent hosts, or di�erent domain name servers

for ertain hosts. Using di�erent diretories for the FAI on�guration (T170) is not re-

ommended, beause we use lasses within FAI to speify di�erent on�gurations. The root

path should also be idential for all lients, in order to save disk spae. Clients an use the

same root diretory simultaneously, beause they do not have write permission for it.

With the option hn, the lient's hostname is sent to the lient instead of the numerial

IP-address. Option ms is needed, beause the on�guration exeeds a ertain size. Setting

bs=auto prevents de�ning the size of the boot �le, whih is the onatenation of options

hd and bf e.g., for roy01 the �lename is /tftpboot/roy01. The values of sm and gw are

used for the booting proess. The network ard will use them to on�gure itself orretly.

The following variables are later used during the on�guration of the operating system:

ys Name of NIS server

yd Name of NIS domain

ts Time server address list

nt NTP (network time protool) server list

dn Domain name that is used in resolv.onf

ds Domain name server address list

sa TFTP server address

9

rp Root path to mount as root

T170 This is a generi tag. It is used for the loation of the FAI diretory.

T171 This generi tag de�nes if an installation should be performed or if a shell will be

exeuted.

There are two generi tags { T170 and T171. The hoie of numbers are random. This

feature may be used in future to pass more data to the lients. See �gure 2 (on page 17),

for how this data is passed to the lient. The manual pages of bootptab(5) ontain more

information.

4 Booting lients

4.1 Creating a boot oppy

There are two methods for booting the lients. The omputer an boot from its network

interfae ard (NIC) to reeive the boot image via BOOTP/TFTP, or an appropriate kernel is

loaded from a oppy. Booting from a network ard is desribed is setion 4.3.

Should booting take plae from oppy, reating a boot oppy is very easy for most

network ards. The �le bzImage.install must be simply opied onto a oppy.

dd if=/files/install/fai/kernel/bzImage.install of=/dev/fd0

This is a bzImage (kernel version 2.0.36) with most devie drivers ompiled into the kernel

and the root devie is hanged with rdev(8) from /dev/hda1 to 0x00ff. The on�guration

for ompiling this kernel is saved into bzImage.install.onfig. The boot oppy an now

be tested (see setion 4.2).

If this bootoppy does not work, a new kernel has to be ompiled. In order to ompile

this installkernel, the BOOTP option has to be enabled, so the kernel will mount the

root �lesystem via NFS. For kernel versions up to 2.1 series, these options are loated

in menu NFS filesystem support and are alled Root file system on NFS and BOOTP

support. In kernels newer than 2.1 ativate Networking options -> IP: Kernel level

autoonfiguration and Filesystems -> Network File Systems -> NFS filesystems

support -> Root file system on NFS

3

. The options ramdisk , pro �lesystem and rt

(real time lok) support are also required, whih will mostly be enabled by default. The

option initrd (initial RAM disk support) must not be enabled. After ompiling the kernel,

the default root devie should be hanged in order to determined by BOOTP. The following

ommands are used to hange it and to write the kernelimage onto a oppy:

lihtenstein[~℄# d /usr/sr/linux/arh/i386/boot

lihtenstein[~℄# rdev bzImage

Root devie /dev/hda1

lihtenstein[~℄# mknod /dev/boot255 0 255

3

Thank to Jakob Flierl for this hint. See http://www.luga.de/~ierl/diskless suse

10

lihtenstein[~℄# rdev /dev/fd0 /dev/boot255

lihtenstein[~℄# rm -f /dev/boot255

lihtenstein[~℄# rdev bzImage

Root devie 0x00ff

lihtenstein[~℄# dd if=bzImage of=/dev/fd0

The �rst rdev all shows the urrent root devie for the kernel image. Then a temporary

devie is reated and set with the seond all of rdev. Finaly we opy the kernel to the

oppy.

4.2 Booting from oppy

The oppy is tested by booting the omputer from it. Here are some of the messages for

the lient roy01 whih is booting without errors:

Loading.................

Unompressing Linux...done.

Now booting the kernel

.

.

Linux version 2.2.10 (root�faiserver) (g version 2.7.2.3)

#11 SMP Thu De 16 12:33:01 MET 1999

Proessor #0 Pentium(tm) Pro APIC version 17

Proessor #1 Pentium(tm) Pro APIC version 17

Proessors: 2

Deteted 398944669 Hz proessor.

Console: olour VGA+ 80x25

.

.

Partition hek:

hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 hda8 >

Sending BOOTP request...... OK

Root-NFS: Got BOOTP answer from 134.95.9.100, my address is 134.95.9.101

Root-NFS: Got file handle for /files/install/root via RPC

These are the messages seen during suessful booting. If the lient reeives no response

from a BOOTP server, the following message appears:

Sending BOOTP request.............. timed out!

This means that the boot oppy is OK, but the omputer an not onnet to a BOOTP

server. If the network ard is not reognized by the kernel, the following error message is

printed:

Root-NFS unable to open at least one network devie

Then a new kernel with support for the installed network ard has to be ompiled.

11

4.3 Booting from network ard

We distinguish two kernel. One kernel, also alled the install kernel, is used during the

installation proess. The other kernel, we named it luster kernel

4

, is used for normal

operation when the lient is booting from the loal disk. These kernels do not need to be

idential. Kernel version 2.0.36 (the default kernel for Debian 2.1) is urrently used during

the installation, and version 2.2.10 is used when the lients have booted from loal disk,

sine we are using lients with two CPU's eah, and the newer kernels better support SMP

(Symmetri Multi Proessing).

For administrative purposes, booting from network ard (NIC) is muh more suitable

than booting from oppy. In order to use this boot method, a boot ROM that is able to

ommuniate with a BOOTP server to reeive ommuniation-related on�guration values

suh as network addresses and whih is apable of ommuniating with a TFTP-server to

obtain a boot image must be obtained. Furthermore, it must be guaranteed that the

transmitted boot image is exeuted properly in terms of what the boot ROM expets in

a boot image. Our boot ROM failed to exeute a bzImage, whih we had reated to boot

from oppy, so we had to �nd another solution.

Booting Linux via network ard is be done by using either Netboot [8℄, Etherboot [9℄ or

NILO

5

. The �rst two programs are apable of reating a boot ROM binary (whih must be

programmed onto a ROM) and a orresponding TFTP boot image whih inludes a kernel

image. Some tools, exist that help test a boot ROM image for example.

The advantage of Netboot is its ability to emulate just enough of a DOS environment

suh that unmodi�ed DOS paket driver binaries (these are usually provided with the NIC)

an be used for building a boot ROM. Etherboot, on the other hand, reates smaller

boot ROM images; the ompressed versions will �t in 8 KB (all NIC's should support

this size). Also Etherboot does autoprobing of the hardware addresses, while Netboot

only does autoprobing as long as the paket driver supports this feature. However, the

boot ROM binary one of these programs reated will most likely have to be burnt onto

an appropriate PROM, but if are it taken in the hoie of hardware to be bought, there

are no problems to get the network ard to work. For our Linux luster, however, we use

neither Netboot, Etherboot, nor a PXE-ompliant boot ROM, but use the boot ROM

by Lanworks Tehnologies that omes with the 3Com-FastEtherlink XL 3905B NICs.

Sine most proprietary solutions are based upon Intel's PXE-spei�ation [15, 5℄ { whih

is supported by the Lanwork ROM urrently is use, as well { this seems to be a rather

unusual workaround. Sine it works well for our purposes, we did not �nd the need to

hange the proedure. If it is lear that either Netboot or Etherboot, or a solution based

on a proprietary PXE-ompliant boot ROM will be used, this part an be disregarded.

3Com usually equips its NICs with the Managed PC Boot Agent (MBA) ROM by

Lanwork Tehnologies. MBA's version v3.10 worked well after we on�gured the ROM as

follows (press Ctrl+Alt+B during boot up):

4

Sine we use it for our Linux luster

5

While this doument is written, developments are made to the NILO projet[11℄. Its goal is to provide

network booting ROM - based on Linux network adaptor drivers - whih support the Intel PXE spei�ation.

12

Managed PC Boot Agent (MBA) v3.10

(C) Copyright 1998 Lanworks Tehnologies Co. a subsidiary of 3Com Corporation

All rights reserved.

===

Configuration

Boot Method: TCP/IP

Protool: BOOTP

Default Boot: Network

Loal Boot: Disabled

Config Message: Enabled

Message Timeout: 3 Seonds

Boot Failure Prompt: Wait for key

===

Use ursor keys to edit: Up/Down hange field, Left/Right hange value

ESC to quit, F9 restore previous settings, F10 to save

In order to build a �le that an be loaded via TFTP from the NIC's and that is able to

boot the kernel properly, we use the tools that are enlosed in the ROM pakage. The tools

require a DOS-formatted disk for booting the Linux kernel. The TFTP boot image we are

using is reated with this disk. We use syslinux(1) to build suh a disk:

lihtenstein[~℄# superformat /dev/fd0

Verifying ylinder 79, head 1

mformat -s18 -t80 -h2 -S2 -M512 a:

lihtenstein[~℄# mount -t msdos /dev/fd0 /floppy/

lihtenstein[~℄# at syslinux.fg

TIMEOUT 40

PROMPT 0

DEFAULT bzImage

APPEND root=/dev/nfs

lihtenstein[~℄# p syslinux.fg /floppy/

lihtenstein[~℄# p bzImage /floppy/

lihtenstein[~℄# umount /floppy/

lihtenstein[~℄# syslinux /dev/fd0

If the BIOS auses trouble booting from this disk, the ommand syslinux -s /dev/fd0 is

used. Afterwards imagegen, a tool from the MBA-software, is used on a standard MS-DOS-

omputer to build the TFTP boot image (a: denotes the disk just reated using syslinux,

tftpboot.img denotes the TFTP boot image whih is to be reated).

C:\> imagegen a: tftpboot.img

The imagegen ommand is invoked only one. The image �le that is reated by imagegen

is exatly 1024 bytes larger than a regular DOS-disk. Therefore all we need are these �rst

1024bytes and a working syslinux boot disk to reate a valid TFTP boot image:

13

lihtenstein[~℄# dd if=tftpboot.img of=first_blok bs=1024 ount=1

1+0 reords in

1+0 reords out

lihtenstein[~℄# p first_blok new_tftpboot.img

lihtenstein[~℄# dd if=/dev/fd0 of=new_tftpboot.img bs=1024 seek=1

1440+0 reords in

1440+0 reords out

lihtenstein[~℄# p new_tftpboot.img /tftpboot/installimage

lihtenstein[~℄# hmod a=r /tftpboot/installimage

This is all it takes to reate a TFTP boot image. There is a shell sript kernel2image.sh

doing exatly the desribed operation by mounting an image of an empty DOS-disk as

loopbak devie. We distinguish between 'install'-booting

6

and 'normal'-booting

7

our Linux

luster. Thus eah lient has a link to one of the two di�erent boot images in /tftpboot/.

lihtenstein[...fai/kernel℄# ls -l /tftpboot/

total 2896

-r--r--r-- 1 root root 1475584 Aug 18 15:23 lusterimage

-r--r--r-- 1 root root 1475584 Aug 18 00:46 installimage

lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:47 roy01 -> installimage

lrwxrwxrwx 1 fai linuxadm 12 Aug 20 15:03 roy02 -> installimage

Boot time arguments are passed to the kernel using the on�guration �le syslinux.fg. Using

suh an \append" parameter, we let the kernel, whih is loaded by the TFTP boot image,

boot either from root devie /dev/hda1 or /dev/nfs

8

. Finally, this is how the TFTP boot

images using the sript kernel2image.sh were atually build for a IDE hard disk:

lihtenstein[...fai/kernel℄# kernel2image.sh lusterimage bzImage /dev/hda1

generate:

tftp boot image "lusterimage" from

kernel "bzImage" with

append-param. "root=/dev/hda1"?

type trl- to abort, return to ontinue

step 1/6: generate temporary DOS-disk

step 2/6: opy kernel to disk

step 3/6: reate syslinux.fg on disk

step 4/6: install syslinux

step 5/6: opy MBA's imagegen-loader to tftp boot image

step 6/6: append DOS-disk to tftp boot image

6

Using /files/install/root as root �lesystem

7

Using the root �lesystem from /dev/hda1

8

To be exat, /dev/nfs is not really a devie, but rather a ag to tell the kernel to get the root �lesystem via

the network.

14

1440+0 reords in

1440+0 reords out

+++ tftp boot image "lusterimage" generated. +++

lihtenstein[...fai/kernel℄# kernel2image.sh installimage bzImage /dev/nfs

.

.

+++ tftp boot image "installimage" generated. +++

Now all information to test if the lients an boot with the seleted method is available.

Setting T171="Xinstall", the lient boots but does not perform the installation.

5 The installation proess

This setion explains the installation proess in detail. The host roy01 is used in our

examples. After unompressing and suessfully booting the kernel, the root diretory

is mounted (for boot messages see setion 4.2) and the �rst proess (init) is spawned.

The �le /et/inittab de�nes that /et/init.d/rS is the �rst proess started by init .

Sine the lient mounts its root �lesystem /files/install/root from the server, it in fat

exeutes /files/install/root/et/init.d/rS, whih is the new sript for the fully

automati installation. A opy of the sript resides in /files/install/fai/fai sripts.

The following steps are performed in rS:

1. initialize Linux

2. setup FAI

3. de�ne lasses

4. format loal disk

5. install software pakages

6. all fengine or other sripts

7. save log �les

8. reboot

We now desribe the operation of this sript.

5.1 Init and setup routines

First, the subroutine fai init is alled.

fai init

1 fai_init() {

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/loal/sbin\

:/usr/loal/bin:/fai/fai_sripts

15

5 export PATH

umask 022

mount -n -t pro pro /pro

at /pro/kmsg >/dev/tty4 &

10 [-x /sbin/update ℄ && update

reate_ramdisk /dev/ram0

> /tmp/FAI_INSTALLATION_IN_PROGRESS

trap 'exe sh' 2

dmesg > /tmp/dmesg.log

15

eho ""

eho "$0: starting fully automati installation FAI ..."

eho "Press trl- to interrupt installation proess and to get a shell"

20 # TODO: if timeout for bootp exit installation

define all bootp information as variables

bootp | sed -e 's/^/export /' > /tmp/bootp.log

. /tmp/bootp.log

hostname $HOSTNAME

25

if ["$T171" != "install" ℄; then

eho /et/bootptab: T171 != install. Not performing FAI installation.

exe sh

fi

30 }

This subroutine mounts the pro �lesystem �rst, sine it ontains information on the hard-

ware and the running system (see manuals of pro(5)). Line 9 redirets all kernel messages

to a virtual onsole that an be viewed by typing Alt-F4. Then the update daemon is

started, ushing the �lesystem bu�ers at a regular interval. In line 11, the subroutine

reate ramdisk is alled to reate a ramdisk on /dev/ram0. The ramdisk is mounted on

/tmp, where all writable �les inluding all log �les are stored. Line 13 enables the fea-

ture to interrupt the installation proess and to exeute a bash shell by typing trl-.

Debugging is therefore possible, should funtions not work as expeted. After displaying

a few messages, bootp is alled. This BOOTP lient program reeives all data from the

BOOTP server and stores it in a temporary �le. Using the simple sed sript, the syntax of

the output is hanged and used as a normal shell sript. Figure 2 shows the �le for lient

roy01 . The sript rS soures this �le and de�nes all the variables. In o-operation with

the generi tags of BOOTP, a lot of information is passed to the lient. If bootp prints an

error message, we hek /et/bootptab or start the BOOTP daemon with debug options

enabled. The �rst step is �nished with the setting of the hostname.

The proedure fai setup mounts the on�guration diretory and reads the global on�g-

uration fai.onf (see appendix, page 32). All variables with pre�x FAI are de�ned in this

�le. Before mounting /usr from the server, only a few exeutables in /files/install/root

are available. After mounting, all programs and most libraries are available inluding rdate,

16

lihtenstein[~℄# at ~fai/roy01/bootp.log

export SERVER='134.95.9.100'

export IPADDR='134.95.9.101'

export BOOTFILE='/tftpboot//roy01'

export NETMASK='255.255.255.0'

export NETWORK='134.95.9.0'

export BROADCAST='134.95.9.255'

export GATEWAYS_1='134.95.9.254'

export GATEWAYS='134.95.9.254'

export ROOT_PATH='/files/install/root'

export DNSSRVS_1='134.95.9.136'

export DNSSRVS_2='134.95.100.209'

export DNSSRVS_3='134.95.100.208'

export DNSSRVS='134.95.9.136 134.95.100.209 134.95.100.208'

export DOMAIN='informatik.uni-koeln.de'

export SEARCH='informatik.uni-koeln.de uni-koeln.de'

export YPSRVR_1='134.95.9.10'

export YPSRVR='134.95.9.10'

export YPDOMAIN='informatik4711.YP'

export TIMESRVS_1='134.95.9.10'

export TIMESRVS='134.95.9.10'

export NTPSRVS_1='134.95.100.209'

export NTPSRVS_2='134.95.170.8'

export NTPSRVS='134.95.100.209 134.95.170.8'

export HOSTNAME='roy01'

export T170='134.95.9.100:/files/install/fai'

export T171='install'

Figure 2: bootp.log for roy01

whih is then exeuted to set the loal time. However, the time may be shown for a di�erent

timezone. It is set orretly at the end of the installation proess.

fai setup

1 fai_setup() {

generi tag 170 (bootptab) used for loation of fai diretory

export FAI_LOCATION=$T170

5 mount -o ro $FAI_LOCATION /fai

read global onfig for fai

if [-r /fai/fai.onf ℄; then

eho mounting FAI diretory from $FAI_LOCATION

. /fai/fai.onf

10 eho $FAI_VERSION

eho ""

else

eho mounting $FAI_LOCATION failed

eho "or an't read /fai/fai.onf"

17

15 eho "Can't start fully automati installation."

sh

fi

after mounting /usr, we have everything needed

20 mount -o ro -n -t nfs ${FAI_NFSSERVER}:/usr /usr &&

eho /usr mounted from ${FAI_NFSSERVER}

rdate ${TIMESRVS_1}

}

5.2 De�ning lasses

The subroutine de�ne lasses is then alled. The variable $lasses ontains a list of all the

lasses that are de�ned for the lient. We also say \the lient belongs to these lasses".

Classes ontrol how a lient will be installed. This feature is desribed later in setion 6.

The subroutine de�ned lasses alls all sripts in fai/lass, whose �le name math the

pattern S[0-9℄*.{sh,pl,soure} (�lenames start with an upperase S follow by a digit

and any other harater ending in .sh, .pl or .soure) and whih are exeutable. These

sripts are alled in alphabetial order and print the names of the lasses to standard output

to de�ne them. Files with post�x .soure need not de�ne lasses, but are used to de�ne

variables for fengine.

define lasses

1 define_lasses() {

d /fai/lass

5 # alphabetial sort is important

for f in `ls S[0-9℄*.{sh,pl,soure}` ; do

if [-x $f ℄ && [-f $f ℄; then

[-n "$verbose" ℄ && eho exeuting $f

10 ase $f in

*.pl) newlasses=`perl $f </dev/null` ;;

*.sh) newlasses=`sh $f </dev/null` ;;

15

soure files, whih an set variables

*.soure)

[-n "$debug" ℄ && set -v

. $f </dev/null

20 [-n "$debug" ℄ && set +v

newlasses=

;;

18

esa

25 [-n "$debug" ℄ && eho " newlasses= $newlasses"

export lasses="$lasses $newlasses"

fi

done

.

30 .

}

5.3 Partitioning disks

After the lasses are de�ned, the main installation part starts. The loal disks are on�g-

ured by alling the sript setup_harddisk.pl (loated in /fai/fai_sripts). The sript

searhes for a disk on�guration �le in /fai/disk onfig, whose name is a lass to whih

the lient belongs. All de�nitions for the disk layout must be stored in one �le. The loal

disks are partitioned, and the sript reates empty �lesystems on these partitions by de-

fault. Moreover, the data on a partition an be preserved, if desired. The partitions are

mounted on $FAI_ROOT aording to the prede�ned mount points. The disk on�guration

for roy01 is stored in the �le 4GB, beause the sript S07disk.pl (see page 26) de�nes this

lass for roy01 and no other on�guration �le with name roy01 exists.

lihtenstein# at 4GB

disk onfiguration for one disk with 1000-4000kb

<type> <mountpoint> <size in mb> [mount options℄ [;extra options℄

disk_onfig hda

primary / 30 rw,errors=remount-ro ;-

logial swap 200 rw

logial /var 50-200 rw

logial /usr 70 rw

logial /tmp 100-150 ;-m 0

#logial /srath 0- rw,nosuid ;-m 0 -i 50000

logial /srath preserve9 rw,nosuid ;-m 0 -i 50000

It is possible to de�ne the size, the mount point, the mount options and extra options

(mostly for mke2fs) for eah partition. A new �lesystem is reated on eah partition by

default. However, the size and the data of a partition an also be preserved. Preserving

data is done by speifying the size as preseve<no>, whereas <no> is the devie number of

the partition that must remain unhanged. If an interval is de�ned for several partition

sizes, the sript tries to maximize these sizes, preserving the ratio between them. A detailed

desription an be found in fai/do/README.disk onfig.

19

5.4 Software installation

After mounting the disks, the Debian software pakages are installed. Debian uses a

\base" tar �le whih inludes all required software pakages. It is the same tar �le that

is used for reating the root �lesystem in /files/install/root/ on the server. The

sript install base root.sh mounts the diretory ontaining all Debian pakages to

/fai/debian/ and extrats �les from the base �le. After these pakages are installed,

the other neessary pakages are installed on the lient. For this, we use the sript

install_pakages.pl, whih reads all on�guration �les from /fai/pakage_onfig/

mathing a lass name, is used. Client roy01 only installs software de�ned in �le ROY,

beause it is a dataless lient, mounting most of the software from the server. Here are two

examples for software on�guration �les:

lihtenstein[...fai/pakage_onfig℄> at ROY

PACKAGES install

netstd lpr piutils sysutils time strae ldso

tsh tsh-i18n less fengine

psmis psutils

ron mpih

lihtenstein[...fai/pakage_onfig℄> at COMPILE

pakages for developing software

PACKAGES install

pp bin86 binutils m4 make

lib6-dev libg++2.8.2 libstd++2.9-dev

g++ g gdb libstd++2.9

flex g77 bya vs

The sript uses the Debian ommand apt-get(8). This new ommand-line tool for handling

pakages { like dpkg(8) { is urrently under development. Therefore, with a new versions

of apt-get , new features will be added, all of whih will make this part of the automati

installation more omfortable. The on�guration �le starts with the string PACKAGES fol-

lowed by an apt-get(8) ommand. Currently only the ommand install is used, but there

are some other ommands like remove or upgrade.

Currently apt-get fails during the installation of some software pakages. Installing a De-

bian pakage omprises several steps. It is important to realize that installing a pakage also

inludes unpaking and on�guring. During the on�guration, an existing postinstall sript

(see /var/lib/dpkg/info/*.postinst) for this pakage is alled, whih may exeute any

ommand. This is a problem for the fully automati installation, sine a hroot $FAI_ROOT

is performed during installation via apt-get . This means that some parts of the postinstall

sripts fail to get their urrent working diretory, or that daemon proesses annot be

started or stopped. The main problem, however, are manual input requests by a post

install sript. This has to be suppressed, sine we want automati installation without

any manual user interation. Nevertheless it was possible to install the software pakages

20

without any interation. For this purpose yes ""| dpkg --onfigure -a is alled after

the installation during the �rst boot from the loal disk. This performs a on�guration for

all remaining unon�gured pakages as if pressing RETURN to all questions the postinstall

sripts would ask. This may not be elegant, but it works ! For safety, the lient reboots

for a seond time later.

5.5 Main part of rS

After installing the software pakages, the default on�guration of the software will not

�t our loal needs. Therefore we use fengine and some shell sripts as the last part of

the automati installation, whih is desribed in setion 6.2. In lines 23 to 46 the type

of the sript is determined and it is exeuted. The subroutine save log stores all log �les

on the loal disk to $FAI LOGDIR and to the user $FAI USER on the server. Finally,

we alter the boot method, in order to hinder installation again. This is done by hanging

the link in /tftpboot on the server, so the lient boots another kernel, whih mounts its

root �lesystem not from the server, but from the loal disk. If the lient was booted from

oppy, it has to be ejeted before booting. Currently we use di�erent links in /tftpboot

to hange the kernel being booted. The following ode shows the main part of rS:

rS

1 fai_init

(# exeute in a subshell to get all output

fai_setup

5 define_lasses

partition loal harddisks

setup_harddisks.pl > /tmp/format.log 2>&1

. /tmp/disk_var.sh

10

mount debian pakages and install baseX_Y.tgz

mount_pakages.sh

eho installing software may take a while

15 install_pakages.pl > /tmp/software.log 2>&1

exeute sripts; fengine and shell sripts are known

eho exeuting sripts

d /fai/sripts

20 for lass in $lasses ; do

if [-x $lass ℄ && [-f $lass ℄; then

filetype=`file $lass`

type=

25 eho $filetype | grep -q "fengine sript" && type=fengine

eho $filetype | grep -q "shell sript" && type=shell

eho exeuting sript: $lass

ase $type in

21

30 shell)

[-n "$verbose" ℄ && eho "exeuting shell: $lass"

eho "===== shell: $lass =====" >> /tmp/shell.log 2>&1

./$lass >> /tmp/shell.log 2>&1

;;

35

fengine)

[-n "$verbose" ℄ && eho "exeuting fengine: $lass"

eho "===== fengine: $lass =====" >> /tmp/fengine.log 2>&1

./$lass --no-lok -v -f $lass -D${flass} >> /tmp/fengine.log 2>&1

40 ;;

*) eho "WARNING: unknown file type for file $filetype" ;;

esa

fi

45 done

hroot $FAI_ROOT hwlok --systoh

date

eho "installation ompleted."

50 rm -f /tmp/FAI_INSTALLATION_IN_PROGRESS

) 2>&1 | tee /tmp/rS.log

if [-f /tmp/FAI_INSTALLATION_IN_PROGRESS ℄ ; then

55 eho Error while exeuting ommands in subshell.

eho /tmp/FAI_INSTALLATION_IN_PROGRESS was not removed.

eho Please look at log files for errors.

sh

fi

60

save_log

now hange boot devie (loal disk or network)

[-n "$FAI_USER" ℄ &&

65 rsh -l $FAI_USER ${SERVER} "d /tftpboot/ ; rm -f $HOSTNAME;\

ln -s lusterimage $HOSTNAME"

if [! -f /tmp/REBOOT ℄ ;then

eho "Press <RETURN> to reboot or trl- to exeute a shell"

70 read

fi

eho "rebooting now"

d /

75 syn

umount -a

exe /sbin/reboot -dfi

22

The installation time is mainly determined by the amount of software that is installed on

the loal disk. An installation of a dataless lient needing less than 50 MB data requires

about two minutes using a 10 Mbit network ard. An installation of a server with 310 MB

of software and the same hardware needs about eight minutes. Using option - in the disk

on�guration for a 3.5 GB partition extents the installation time by about seven minutes

beause it heks for bad bloks.

6 The on�guration

Most �les for the automati installation proess are stored in the diretory tree displayed

below. Only bootptab and NIS information are loated in other loations but opies exists

in the subdiretory et.

lihtenstein# tree -d /files/install/fai/

/files/install/fai/

|-- lass

|-- disk_onfig

|-- do

|-- et

|-- fai_sripts

|-- files

| |-- boot

| | |-- System.map

| | |-- onfig

| | `-- vmlinuz

| |-- et

| | |-- X11

| | | |-- XF86Config

| | | `-- Xserver

| | |-- alternatives

| | |-- hosts

| | |-- hosts.allow

| | |-- hosts.deny

| | |-- hosts.equiv

| | |-- kbd

| | | `-- default.map.gz

| | |-- modutils

| | |-- nsswith.onf

| | |-- printap

| | `-- r2.d

| |-- modules

| |-- root

| `-- tftpboot

|-- kernel

|-- pakage_onfig

`-- sripts

23

6.1 Sripts for de�ning lasses

The idea of using lasses in general and using ertain �les mathing a lass name for a

on�guration is adopted from the installation sripts by Casper Dik [16℄ for Solaris

TM

.

This tehnique proved to be very useful for our SUN workstations, so we also used it for

the fully automati installation of Linux. One simple and very eÆient feature of Casper's

sripts is to all a ommand with all �les, whose �le names are also a lass. The following

loop may implement this funtion in a shell sript:

for lass in $lasses

do

if [-r $onfig_dir/$lass ℄; then

<ommand> $onfig_dir/$lass

exit, if only the first mathing file is needed

fi

done

A variation would be to all the ommand only for the �rst �le that mathes a lass name.

Therefore it is possible to add a new �le to the on�guration without hanging the sript.

This is beause the loop automatily detets new on�gurations �les that should be used.

Unfortunately fengine does not support this nie feature, so all lasses being used in

fengine need also to be spei�ed inside the fengine sripts. Classes are very important for

the fully automati installation. If a lient belongs to lass A, we say the lass A is de�ned.

A lass has no value, it is just de�ned or unde�ned. Within sripts, the variable $lasses

holds a spae separated list with the names of all de�ned lasses. Classes determine how

the installation is performed. For example, an install lient is on�gured to beome a FTP

server by default. If on the other hand it belongs to the lass NOFTPD, the fengine sript

disables this feature in inetd.onf.

Mostly a on�guration is reated by only hanging or appending the lasses to whih

a lient belongs, making the installation of a new lient very easy. Thus no additional

information needs to be added to the on�guration �les if the existing lasses suÆe your

needs. There are di�erent possibilities to de�ne lasses:

1. The name of the hostname is de�ned to be a lass.

2. Classes may be de�ned within a �le.

3. Classes may be de�ned by sripts.

The last option is a very nie feature, sine these sripts will de�ne lasses automatially.

For example, several lasses are de�ned only if ertain hardware is identi�ed. We use

Perl [7℄ and shell sripts to de�ne lasses. All names of lasses, exept the hostname, are

written in upperase. They must not ontain a hyphen, a hash or a dot, but may ontain

undersores. The sripts and �les in /fai/lass used to de�ne lasses are listed:

S00hostname.sh : Adds the lass with the hostname, whih is the �rst lass. Additionally

adds all lasses that are stored in a �le named as the lient and the lass ALL.

24

S01alias.sh : For all lients named roy01 to roy16, use the lasses from �le roy.lasses.

S02memory.pl : Di�erent lasses are de�ned for di�erent sizes of RAM. No yet used, for

demonstration purpose only.

S03ssi.sh : If a SCSI devie is attahed, it adds the lass SCSI . Not yet used.

S05network ard.pl : Depending on ertain network ards, a lass for this ard is de-

�ned. These lasses are used to install di�erent loadable kernel drivers.

S07disk.pl : De�nes lasses depending on number of disks, their size or the overall disk-

size. Theses lasses determine the disk layout.

S24nis.sh : If a NIS domain is de�ned in /et/bootptab, the lass NIS and a lass with

the upperase name of the NIS domain are added. Dots are replaed by undersores.

S88dataless.sh : Add lass DATALESS for all hosts with pre�x testlient exept test-

lient99 . This sript is not used, but for demonstration purpose.

S90srath.sh : If the disk layout de�nes a partition /srath or /files/srath, the

lasses NFS SERVER and SCRATCH respetively FILES SCRATCH are added.

This sript may use lasses that are de�ned in S07disk.pl.

S90tmp-partition.sh : If a separate partition for diretory /tmp exists, it adds the lass

TMP PARTITION .

S99rootpw.soure : Does not add a lass, but de�nes the variable rootpw . The root

password is mandatory.

S99var.soure : De�nes some variables for fengine.

roy.lasses : A �le ontaining lasses for all lients with pre�x roy . This �le will be used

by the sript S01alias.sh.

faiserver : This �le ontains lasses that are only used by lient faiserver . S00hostname.sh

will use this �le.

For example, the sript S05network ard.pl de�nes the lasses 3C905B and 100MBIT for

roy01 . The �rst is used in fengine to add a �le in /et/modutils, the latter lass is

not used yet, it is only added for demonstration purpose. Client roy01 also uses the �le

roy.lasses to de�ne lasses. It ontains a list of lasses whih are de�ned for all lients

whose hostname mathes roy?? (done by S01alias.sh). Using all these sripts, the lient

roy01 belongs to these lasses:

roy01 ALL DATALESS BASE NETWORK BOOT LAST REBOOT NOPCMCIA NOPPP NOTFPD

NOTELNETD NOFTPD ROY XNTP MINI_SOFT REMOTE_PRINTER HOME_CLIENT NET_9

K2_2_10 USR_LOCAL_MOUNT BIG_MEMORY 3C90X 4GB NIS INFORMATIK4711_YP

NFS_SERVER SCRATCH TMP_PARTITION

The de�ned lasses are stored in the log �le FAI CLASSES. Hostnames should rarely be used

for the on�guration �les in /fai/disk_onfig, /fai/pakage_onfig or /fai/sripts

and subdiretories. Instead, a lass is used and this lass is added to the host.

25

Files that end in .soure do not de�ne lasses, but may de�ne variables for sripts that

are alled later. Any system administrator may write new sripts in Perl. A fundamental

knowledge of Perl is not neessary

9

. There are prede�ned subroutines in fai.pl, whih

help writing small sripts, with a very simple syntax. To prove the orretness of a new

Perl sript, apply:

lihtenstein[~℄> perl -w S55new_sript.pl

S55new_sript.pl syntax OK

Warnings about variables, used only one do not matter. Below is an example:

S07disk.pl

1 #! /usr/bin/perl

define lasses for different disk onfigurations

global variables:

5 # $numdisks # number of disks

%disksize {$devie} # size for eah devie

$sum_disk_size # sum of all disksizes

require "fai.pl";

10 read_disk_info();

rules for lasses

#---

two SCSI disks 2-5 GB

15 ($numdisks == 2) and

disksize(sda,2000,5000) and

disksize(sdb,2000,5000) and

lass("SD_2_5GB");

20 # one disk 1-4 GB

($numdisks == 1) and

testsize($sum_disk_size,1000,4000) and

lass("4GB");

#---

25 # do not edit beyond this line

exit;

-

sub read_disk_info {

open (DISK,"sfdisk -s|");

30 while (<DISK>) {

if (m!^/dev/(.+):\s+(\d+)!) {

my ($devie,$size) = ($1,$2);

$numdisks++;

push �devielist,$devie;

35 $size /= 2048;# bloks -> Mbytes

9

Learning Perl is never wasted time.

26

$sum_disk_size += $size;

$disksize{$devie} = $size;

}

}

40 lose DISK;

}

sub disksize {

45 my ($disk,$lower,$upper) = �_;

testsize($disksize{$disk},$lower,$upper);

}

Only between lines 13 and 24 hanges or additions are allowed. The other parts of the

sript should remain unhanged. The two subroutines lass and lasses both print out the

names of lasses. The �rst subroutine exits the sript, while the seond remains to allow

further heking of onditions.

6.2 Cfengine and lasses

We all fengine, whih make the hanges to the installed operating system. This is where

the system is ustomized to our personal requirements. It is usually performed manually

by the system administrator after a suessful installation. For example:

� disable ftp daemon,

� set root password,

� on�gure DNS lookups,

� set up NIS,

� edit /et/fstab,

� all lilo for an other kernel,

� disable unused modules (eg. pmia), and

� set up E-mail.

All these hanges are made automatially, if they are de�ned in the on�guration of fengine.

Cfengine is alled for all fengine sripts in /fai/sripts, that math the name of a de�ned

lass. We are also using some shell sripts, but fengine is more appropiate for this work.

The last part of the installation is mostly done by fengine [12℄. It is a tool to set up and

maintain operating systems easily. It has a rih set of ommands to alter the on�guration.

At present we only use it during the installation, but not for maintaining the running

system, although this is possible. Within fengine, lasses an be de�ned using modules,

but we did not use this feature, beause all lasses whih ould be de�ned from this module

before alling the module itself would have had to be delared. This is not very smart. We

need a mehanism to de�ne lasses without delaring them. We therefore pass all de�ned

lasses to fengine via the ag -D. Currently the following fengine sripts are used:

27

BASE, BOOT, LAST, NETWORK, NIS, NONIS, TFTP_SERVER, X11, ALL, LAST

We tried di�erent types of partitioning a on�guration into several �les, and the hoie

ranged between one long on�guration �le to many shorter �les. A solution somewhere

in the middle is probably the best hoie. Often fengine opies a \master �le\ from a

soure loation to a destination. The root of the soure loation is /fai/files. The

tree struture of the normal �lesystem is being preserved. So if we have a master �le for

/et/nsswith.onf, its loation is /fai/files/et/nsswith.onf. However in our

on�guration we have two versions of nsswith.onf, one for the lass NIS and another

for lass NONIS . If we need more than one version of a �le, a diretory for this �le is

reated under the same name. So /fai/files/et/nsswith.onf onverts from a �le

to a diretory ontaining two �les alled NIS and NONIS. The part of the opy setion of

NETWORK's fengine on�guration �le looks like this:

opy:

NIS::

${files}/et/nsswith.onf/NIS dest=${target}/et/nsswith.onf

m=644 o=root g=root

fore=true bakup=false

NONIS::

${files}/et/nsswith.onf/NONIS dest=${target}/et/nsswith.onf

m=644 o=root g=root

fore=true bakup=false

Unfortunately, fengine provides no mehanism to shorten suh twin de�nitions. The sripts

from Casper Dik an do this by automatially searhing all �les whose name is a lass, and

use the �rst one or all, if this make sense for the operation (not with opy).

It is advisable to doument the task a lass performs. Using this doumentation, the

reation of a on�guration for a new lient will beome very easy beause it is suÆient to

hoose some lasses from the available lasses. Here is a short desription of the available

lasses. For more information the sripts have to be read.

BASE some base on�gurations

BOOT opy kernel and modules and all lilo

LAST remove old version of some �les

NETWORK on�gure network related parts like printer, xntp, network, inetd

COMPILE selet software pakages for software development

KERNEL SOFT installs kernel soures and kernel headers

KEYBOARD GERMAN default.map for german keyboard

MINI SOFT minimal software list

SOFT extensive software list

28

NIS on�gures system as NIS lient

NONIS do not use NIS

ROY several little hanges

TFTP SERVER enable tftpd and opy lusterimage and installimage to /tftpboot

XNTP on�gures system to use NTP (Network Time Protool)

4GB disk layout for one disk up to 4 GB

K2 2 10 kernel version 2.2.10, System.map and .on�g

KONGRESS1999 some speial tasks for faiserver

NET 9 network related things that belongs to our lass C subnet

USR MOUNT mount /usr from $bserver

USR LOCAL MOUNT mount /usr/loal from $bserver

USR LOCAL COPY make a opy of /usr/loal to loal �lesystem

SCRATCH export /srath to netgroup �sundomain and �linux-luster

FILES SCRATCH export /files/srath to netgroup �sundomain and linux-luster

FAISERVER export �lesystem to netgroup �fai

NOPCMCIA remove software pakage pmia

NOPPP remove software pakage ppp

3C905B module information for the network ard

NFS SERVER selet software used for a nfs server

7 Conlusions

Sine FAI uses mostly sripts it is very easy to install and use. It uses only use few

exeutables inluding: fengine, perl, sfdisk, bootp. Sine only few hanges to the root

�lesystem are neessary during the installation, it is very easy to set up FAI. Our installation

system does not use prepared images of harddisk partitions, or save all answers to the

installation questions like other tools do. It performs all steps of a normal base installation

automatially using simple on�guration data. Additionally, it on�gures the operating

system to the loal needs.

The FAI homepage is

http://www.informatik.uni-koeln.de/fai

where you an �nd the newest release of FAI. There is also some information on the fully

automati installation of Solaris. Please mail omments, bugs and suggestions to

fai�informatik.uni-koeln.de

and enjoy the fully automati installation.

29

Referenes

[1℄ Diskless Linux Mini Howto

[2℄ NFS-Root-Client Mini Howto

[3℄ Linux Partition Mini Howto

[4℄ NFS-Root Mini Howto

[5℄ Linux Remote-Boot Mini Howto

[6℄ The Linux NIS(YP)/NYS/NIS+ HOWTO

[7℄ Perl manuals

[8℄ www.han.de/~gero/netboot/

[9℄ www.slug.org.au/etherboot/

[10℄ www.debian.org

[11℄ www.nilo.org

[12℄ www.iu.hioslo.no/fengine

[13℄ Solaris 7 Advaned Installation Guide, dos.sun.om

[14℄ www.damtp.am.a.uk/linux/bootp/

[15℄ developer.intel.om/ial/WfM/wfmspes.htm

[16℄ ftp://ftp.fwi.uva.nl:/pub/solaris/auto-install/install.tar.gz

[17℄ Soures of /usr/sr/boot-oppies/utilities/ in Debian pakage boot-oppies

[18℄ Bootstrapping an Infratruture: www.infrastrutures.org/papers/bootstrap

30

Appendix

reate lient root.sh

1 #! /bin/sh

reate_lient_root.sh -- reate installation root filesystem

mounted readonly by all lients during installation proess

5 installdir=/files/install/root

rs=/files/install/fai/fai_sripts/rS

basefile=/files/install/debian/dists/slink/main/\

disks-i386/urrent/base2_1.tgz

bootp=/sbin/bootp

10

eho ""

eho "reate installation root filesystem in $installdir ?"

eho "type trl- to abort, return to ontinue"

15 read input

if [-d $installdir ℄; then

eho "$installdir must not exist. Please delete it."

exit

fi

20

set -x

mkdir -p $installdir || exit

d $installdir

tar zxpf $basefile

25 mkdir fai

rm -f et/mtab et/apt/soures.list

ln -s /pro/mounts et/mtab

mv et/init.d/rS et/init.d/rS.orig

30 # fengine need /var/run/ writable

rm -rf var/run

ln -s /tmp/var/run var/run

#p $rs et/init.d

35 # make hardlinks, so you an edit the sript and

diretly use the new versions

ln $rs et/init.d

p $bootp $installdir/sbin

40 set -

eho ""

eho do not forget to export $installdir

eho Add entry into /et/exports and exeute

eho killall -v -HUP rp.mountd

31

install base root.sh

#! /bin/sh

install_base_root.sh

mount debian diretory and unpak baseX_Y.tgz

basetgz=base2_1.tgz

mkdir $FAI_ROOT/debian

mount -o ro $FAI_PACKAGEDIR $FAI_ROOT/debian || exit

eho "Unpaking Debian $basetgz ..."

d $FAI_ROOT

tar zxpf $FAI_ROOT/debian/dists/slink/main/disks-i386/urrent/$basetgz

fai.onf

all (global) variables begin with FAI (fully automati installation)

these are global definitions for et/init.d/rS sript

FAI_VERSION="FAI Version 1.0, De 1999"

Server where to mount /usr and the Debian software pakages from

FAI_NFSSERVER=$SERVER # same as tftp server (:sa in /et/bootptap)

loation, where log file are stored

FAI_LOGDIR=/var/log/fai

loation of master files for fengine

FAI_FILES=/fai/files

loal disk are mounted on this diretory

FAI_ROOT=/tmp/target

FAI_USER: aount on TFTP server, whih saves all log-files and

whih an hange the kernel that is booted via network. Configure

.rhosts for this aount, so user root an login from all install

lients without password. This aount must have write permissions

for /tftpboot. We are doing this with write permissions for the

group linuxadm. hgrp linuxadm /tftpboot;hmod g+w /tftpboot

if variable is unset, this feature is disabled

FAI_USER=fai

full loation of Debian softwarepakages

FAI_PACKAGEDIR=$FAI_NFSSERVER:/files/install/debian

export FAI_VERSION FAI_NFSSERVER FAI_LOGDIR FAI_ROOT

export FAI_USER FAI_PACKAGEDIR FAI_FILES

32

